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PREFACE 

Although the heating and cooling sector is very large in size and already provides low and no-

carbon solutions, it has largely been overlooked in all scenarios exploring the energy future 

towards 2050. The Energy Roadmap 2050 published by the European Commission rightly 

acknowledges that renewable heating and cooling is vital to decarbonisation and that a cost-

optimal policy choice between insulating buildings and systematically using waste-heat needs to be 

found. Yet, the Roadmap omits a thorough analysis of the heating and cooling sector.  

Against this background, during early 2011, Euroheat & Power, Aalborg University and Halmstad 

University further discussed the possibility for developing a major European research project called 

Heat Roadmap Europe, focusing on the future European heat and cooling market and its 

interactions with other parts of the energy market. In order to prepare for a full project proposal, a 

pre-study research project was established. The five major purposes of the pre-study were 

identified as: 

  Validation of the proposed research methodology. 

 Indication of possible results from a future full research study. 

 Early warning information to policy-makers about the quality of official EU energy 

roadmaps with respect to the expansion of district heating systems. 

 Giving an alternative future projection to many all-electric future heat scenarios. 

 Information leaflet for tentative partners in a future research consortium concerning Heat 

Roadmap Europe. 

The Aalborg and Halmstad universities have performed this pre-study in cooperation according to 

a methodology based on energy modelling and mapping of local conditions reflecting the possible 

future district heating opportunities. 

 

May 2012, 

 

Henrik Lund        Sven Werner 

Professor at Aalborg University      Professor at Halmstad University 
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EXECUTIVE SUMMARY 

This pre-study presents the findings concerning a considerable expansion of the district heating 

sector within the current EU27 member states until 2050. Heat deliveries are presumed to grow by 

a factor of 2.1 until 2030 and by a factor of 3.3 until 2050. 

The current energy policy context is that the latest energy communication from the European 

Commission (Energy Roadmap 2050) contains only a very modest growth in the future for district 

heating systems and additional industrial heat use from industrial CHP plants. A small increase is 

foreseen for industrial demands, while heat deliveries to the residential and service sectors are 

expected to decrease. In total, the heat delivered is expected to increase by less than one per cent 

per year, giving a total increase of 20% until 2030 and of 40% until 2050. 

In this prestudy, more ambitious growth rates are assessed for district heating in the EU27 

between 2010 and 2050. The chosen methodology in this pre-study contains a combination of 

hour-by-hour energy modelling of the EU27 energy system and mapping of local conditions, which 

is essential for district heating analysis. However, the link between these two actions has not been 

fully utilised in this pre-study due to the limited working time available: The mapping action has 

only indicated the input to the energy modelling action. 

MAPPING OF LOCAL CONDITIONS  

Currently, 60 million EU citizens are served by district heating systems in their daily life. But the 

existing district heating systems supply only part of the heat demands in the cities they serve. 

Cities with at least one system have a total population of 140 million inhabitants and 

approximately 57% of the EU population lives in regions that have at least one district heating 

system. Hence, more district heat can be delivered in the future by expanding existing district 

heating systems. 

Only less than half of the calorific value of waste incinerated in 414 waste-to-energy plants is 

recovered as electricity or heat. This gives a driving force for increasing the heat recycling from the 

existing plants. Further waste-to-energy plants can be implemented, as almost 100 million tonnes 

of non-recycled waste is deposited in landfills. 

One quarter of the European population lives in urban areas that could be reached by geothermal 

heat through future district heating systems. This includes major cities such as Hamburg, Berlin, 

Munich, Frankfurt am Main, Hanover, Stuttgart, Aalborg, Groningen, Amsterdam, Rotterdam, 

Paris, Lyon, Strasbourg, Barcelona, Budapest, and Bratislava. 

Other local conditions considered are heat demands in urban areas, thermal power generation for 

using combined heat and power, biomass availability, and solar district heating. 

The vision for the mapping of local conditions is to present the most suitable regions (hot spots) 

for future expansion of district heating systems by combining information about heat demands 

with information about available heat sources for each region within the EU27. Due to 

uncertainties relating to the quality of carbon dioxide emissions reported from various industrial 
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and energy plants in the E-PRTR database, the most interesting hot spots for district heating 

cannot yet be presented in numbers. However, this major question mark can be eliminated by 

correcting these current deviations in the database. 

In summary, the mapping part of the pre-study indicated that the market shares for district 

heating for buildings can be increased to 30% in 2030 and 50% in 2050.  

ENERGY SYSTEM ANALYSIS FOR 2010 

To begin, this pre-study focused on the existing EU27 energy system. A detailed breakdown of the 

energy consumed for the EU27 is available from the International Energy Agency, which was 

updated until 2009 at the time this study was being carried out [1, 2]. Therefore, the 2009 EU27 

energy balance was used to represent the 2010 reference point in this pre-study. Using an 

historical year is important since historical data represents the actual operation of the energy 

system and it is documented in much more detail than forecasted scenarios: hence, the historical 

data can be used as a baseline for estimating future data which is not available. From the EU27 

energy balance from the IEA, it is evident that district heating accounts for approximately 12% of 

the total residential and services heat demand in 2009. This 2010 historical reference is modelled 

on an hour-by hour basis in this pre-study using the energy system analysis tool EnergyPLAN. 

Using the EnergyPLAN tool, a first draft evaluation of expanding district heating in Europe is carried 

out in this Heat Roadmap Europe (HRE) pre-study, from the present 12% to first 30% and 

afterwards to 50% of the heating of buildings. The benefits are illustrated in two steps. Step 1 

shows the potential energy efficiency improvements connected to CHP while step 2 shows the 

additional potential of increasing the use of industrial waste heat, waste incineration, geothermal 

and solar thermal resources. Both steps are calculated for the present European energy system for 

the year 2010 as well as for a scenario representing the implementation of current EU27 energy 

policy until 2050. 

According to the IEA EU27 energy balance for 2009, which was used to profile the heating sector in 

2010, the 38% (50% minus 12%) of heating for buildings in question is today heated by electric 

heating or individual boilers burning coal, oil, natural gas or biomass. In step1 these buildings are 

converted to district heating using the following assumptions: 

  Coal, oil and natural gas boilers are replaced accordingly, while no replacement of biomass 

boilers are assumed. Firstly, biomass boilers are typically outside the reach of district heating 

and secondly, biomass replaced by district heating may again be used to replace oil and natural 

gas in other buildings. 

  Moreover to simplify the calculations in the pre-study, no electric heating has been replaced, 

although that can prove to be an important part of the district heating expansion. 

  The production of district heating  will come partly from existing power and CHP plants 

assuming an average efficiency in the present situation of 32% electric and 52% thermal 

output and partly from new Combined Cycle (CC) CHP plants with an efficiency of 47% electric 

and 44% thermal output. The CC plants will burn natural gas equivalent to the oil and gas 

saved in the individual boilers being replaced. 
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 The share of peak load boilers in all systems is assumed to be on the same level as the existing 

average of approximately 9-13%. In the case of 50% district heating this means that a small 

share of large-scale heat pumps in district heating areas will have to be added in order to be 

able to balance the electricity supply. 

The idea of these assumptions is to illustrate the potential energy efficiency improvements using 

the same amounts of biomass as well as oil plus natural gas. The results are illustrated in Figure 1. 

As can be seen, the expansion of district heating and CHP will decrease the fuel consumption for 

heating buildings in Europe substantially. Today 12% of heat is supplied by district heating which 

consumes a little less than 250 TWh/year of fuel, while the remaining individual boilers consume 

around 3100 TWh/year. The total of approximately 3350 TWh/year will decrease by 40% to around 

2000 TWh/year if a 50% district heating share is reached. The fuel used by the boilers to be 

replaced by district heating if expanded to 50%, is today approximately 1550 TWh/year of coal, oil, 

and natural gas.  In a system with district heating and CHP the fuel consumed by the total energy 

system will decrease by 1300 TWh/year (see Figure 2), meaning that the same heating can be 

provided with a net use of only 250 TWh/year of fuel. The net use of 250 TWh/year requires the 

following changes to the system: Fuel for CHP is increased in existing systems by 1360 TWh/year 

and in new CC-CHP systems by 1560 TWh/year while the electricity from the CHP plants replaces 

2670 TWh/year of production from the condensing power plants. In the power and CHP plants, the 

burning of natural gas is increased by net 1460 TWh/year equivalent to the oil and gas saved in the 

individual boilers while the net influence on the use of coal is a decrease of 1210 TWh/year. 

 

Figure 1: Primary energy supply and carbon dioxide emissions from hot water and the heating of buildings in the 2010 EU27 energy 

system at present and if district heating and CHP were expanded to 30% or 50%. 
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Figure 2: Primary energy supply and carbon dioxide emissions for the entire EU27 energy system in 2010 at present and if district 

heating and CHP were expanded to 30% or 50%. 

In total, Figure 2 indicates that the expansion of district heating will decrease the European 

primary energy consumption by 7%, fossil fuels by 9%, and the carbon dioxide emissions by 13% 

while still supplying the exact same energy services. Again it should be noted that the potential for 

fuel savings is most likely higher than calculated in this pre-study, since there are additional 

alternatives which could also be implemented. For example, there is also a substantial amount of 

electric heating in the EU27 energy system which can be converted. 

Step 2 illustrates further benefits of district heating by implementing the following investments: 

 Increase waste incineration from now 105 to 1198 TWh/year in 2050 

 Increasing the use of geothermal heat from now approximately 2 to 111 TWh/year in 2050 

 Increase the use of solar thermal heat from now 0.04 to 55.5 TWh/year in 2050 

 Increase the use of industrial excess heat from 53 to 219 TWh/year in 2050 

The results are shown in Figure 3.  

Since these investments represent the replacement of fuels rather than efficiency improvements, 

such benefits will only slightly decrease the primary energy consumption further. However the 

share of fossil fuels as well as the carbon dioxide emissions will be reduced substantially. If both 

step 1 and 2 are implemented, then the total fossil fuels in Europe are reduced by 13% and the 

carbon dioxide emissions by 17%, as illustrated in Figure 4. 
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Figure 3: Primary energy supply and carbon dioxide emissions from hot water and the heating of buildings in the 2010 EU27 energy 

system at present and if district heating and CHP were expanded to 30% or 50%, in combination with the expansion of industrial waste 

heat, waste incineration, geothermal, and solar thermal heat for district heating.  

 

Figure 4: Primary energy supply and carbon dioxide emissions for the entire EU27 energy system in 2010 at present and if district 

heating and CHP were expanded to 30% or 50%, in combination with the expansion of industrial waste heat, waste incineration, 

geothermal, and solar thermal heat for district heating. 
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REFERENCE SCENARIO FOR 2030 AND 2050 

Additional to the above estimation of district heating benefits in the present 2010 EU27 system, 

the analyses has also been carried out for a reference scenario representing the implementation of 

current EU27 energy policy until 2050: this is based on the Current Policy Initiatives (EU CPI) 

scenario in the “Energy Roadmap 2050” report. This scenario represents a business-as-usual 

forecast for the EU27 energy system if existing policies are followed. Some interesting trends 

included in the EU CPI scenario are the following: 

 Nuclear power is gradually reduced during the period to 2030, but subsequently begins to 

increase back to 2010 levels in 2050 once again. 

 The EU 20-20-20 targets for renewable energy, greenhouse gas emissions, and energy savings 

for 2020 are achieved. 

 Existing CHP and Power plants are being replaced with new plants over the years resulting in a 

gradual increase in the average efficiencies of the European power sector. 

 The specific heating demand for buildings is decreased due to energy conservation 

improvements in the buildings, but the heat demand in industry increases substantially. 

 

 

ENERGY SYSTEM ANALYSIS FOR 2010, 2030 AND 2050 

The results of these analyses are illustrated in Figure 5 and Figure 6 with regard to primary energy 

supply and carbon dioxide emissions. In the diagrams the expansion of district heating is compared 

to the CPI reference (EP CPI in the graphs refers to the model of the CPI scenario constructed in 

the EnergyPLAN tool). As can be seen the fuel consumption for heating is expected to decrease in 

the CPI reference mainly due to energy savings. If district heating is expanded at the same time 

then substantial fuel savings and carbon dioxide reductions will be achieved due to a combined 

increase in energy efficiency in electricity and heat production. This is evident in Figure 7 by the 

increased use of CHP, surplus heat, and renewable resources in the HRE scenarios. 
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Figure 5: Primary energy supply and carbon dioxide emissions from hot water and the heating of buildings in the 2010, 2030, and 2050 

EU27 energy system under a business-as-usual scenario and if district heating and CHP is expanded to 30% in 2030 and to 50% in 2050, 

in combination with the expansion of industrial waste heat, waste incineration, geothermal, and solar thermal heat for district heating.  

 

Figure 6: Primary energy supply and carbon dioxide emissions for the entire EU27 energy system in 2010, 2030, and 2050 under a 

business-as-usual scenario and if district heating and CHP were expanded to 30% in 2030 and 50% in 2050, in combination with the 

expansion of industrial waste heat, waste incineration, geothermal, and solar thermal heat for district heating. 
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Figure 7: District heating production for the entire EU27 energy system in 2010, 2030, and 2050 under a business-as-usual scenario and 

if district heating and CHP were expanded to 30% in 2030 and 50% in 2050, in combination with the expansion of industrial waste heat, 

waste incineration, geothermal, and solar thermal heat for district heating. 

 

JOBS AND INVESTMENT COSTS FOR EXPANDING DISTRICT HEATING SYSTEMS. 

This pre-study also includes a rough estimate of costs which indicate that, assuming the same fuel 

prices as forecasted in the Energy Roadmap 2050 report, the implementation of the district 

heating expansion scenario will decrease the total costs of heating buildings in Europe by 

approximately €14 billion/year in 2050, as illustrated in Figure 8. Even more importantly, 

implementing the district heating alternative will transfer money from importing fossil fuels to 

investments in district heating pipelines, CHP plants, geothermal, solar thermal, industrial waste 

heat, and waste incineration. Thus a substantial number of jobs will be created in the investment 

phase. This pre-study only includes a first rough estimate of job creation which is around 8-9 

million man years: this equates to approximately 220,000 new jobs on average over the 38 year 

period from 2013 to 2050. It must however be emphasized that 220,000 jobs is a rough estimate 

of the minimum number of work places being created and the 220,000 jobs solely arise from the 

additional investments. The real number will be higher because: 

 Multiplier effects of the jobs created are not included. 

 Additional jobs are not included to account for the fact that when the energy costs of Europe 

decrease, European industry will become more competitive. 

 Additional jobs from industrial innovation due to the investments in new energy technologies 

are not included. 
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Figure 8: Socio-economic costs for the entire EU27 energy system in 2010, 2030, and 2050 under a business-as-usual scenario and if 

district heating and CHP were expanded to 30% in 2030 and 50% in 2050, in combination with the expansion of industrial waste heat, 

waste incineration, geothermal, and solar thermal heat for district heating. 

 

CONCLUSIONS 

The major findings from this Heat Roadmap Europe pre-study exploring the future district heating 

possibilities can be summarised by the following eight conclusions: 

 The first conclusion is that more district heating in Europe will reduce the energy system 
costs considerably since local heat recycling and renewable energy use will reduce 
expensive energy imports, while also increasing the efficiency of both the electricity and 
heat sectors. The pre-study calculations indicate that the overall annual cost reduction in 
the heating sector will be about €14 billion by 2050, if more district heating is 
implemented compared to the Energy Roadmap 2050 CPI reference. This corresponds to a 
relative cost decrease of 11%. At the current energy import prices, the direct socio-
economic payback is estimated to be two to three years for heat distribution pipes put 
into the ground giving more recycled heat. In addition, there is a balance-of-payment 
benefit that has not been quantified in this study. 
 

 The second conclusion follows from the first conclusion: Since fossil fuels are substituted 
with local resources, the reduced primary energy supply from fossil fuels will also give 
considerably reduced emissions of carbon dioxide for all heat demands served by district 
heating systems. The reduced energy import will also increase the future security of supply 
and give more positive balances of foreign exchange. 
 

continued on next page 
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 The third conclusion is that more district heating will generate local labour since intensive 
investments will replace expensive imports of fossil fuels to Europe. An estimate indicates 
that approximately 8-9 million man-years will be created in Europe during the 40 year 
period, due to investments in heat recycling, renewable energy supply, and extended and 
new heat grids. This represents a rough estimate of the minimum number of jobs and 
should be quantified more thoroughly in the future. 
 

 The fourth conclusion concerns the future European electricity supply system. With a high 
proportion of variable renewable electricity supply, a smart energy system is crucial so 
that all sectors can contribute to a balance between supply and demand. One of the 
proven flexible partners is district heating systems which can provide balancing power in 
both directions. For example, electric boilers and large heat pumps together with thermal 
storages can absorb critical excess electricity generation, while combined heat and power 
plants can actively support the electricity supply system during power deficits. Therefore, 
district heating can enable higher penetrations of intermittent electricity production on 
the European electricity grid. 
 

 The fifth conclusion is about the importance of communicating the local possibilities for 
district heating to urban and regional planners. The planned continuation of this pre-study 
should contain a creation of an interactive internet tool providing the local conditions for 
district heating for each administrative region in the EU27. 
 

 The sixth conclusion is about the methodology applied in this pre-study, which is a 
combination of energy modelling and mapping of the local conditions using a high 
geographical resolution: The high resolution also recognises future possibilities for local 
activities managed by local organisations. This methodology is crucial for district heating 
analysis since the potential for expansion is dependent on local heat resources and 
demands. Therefore, this methodology should be elaborated in the planned continuation 
of this pre-study, while also making a tighter connection between the energy modelling 
part and the local mapping part. 
 

 The seventh conclusion concerns traditional energy modelling based on national energy 
balances. Their low geographical resolution tends to exclude specific local possibilities. 
Hereby, they favour generic possibilities available everywhere such as electric and gas 
alternatives associated to major international energy companies. Hence, these traditional 
energy tools may only capture some of the alternatives available. Traditional energy tools 
also tend to work with a low time resolution in their analyses. However, it is important to 
use a high time resolution to capture the daily variations in the energy system in order to 
verify the true variability in energy demand and supply, especially in a future energy 
system with high penetrations of intermittent resources.  
 

 The eighth and final conclusion refers to the availability of data within the current IEA and 
future Energy Roadmap 2050 reports. At present, there is a lack of detailed data for the 
heat sector in these energy balances. For example, all fuels consumed by CHP plants are 
recorded together and not subdivided by condensing mode, extraction mode, and back-
pressure mode. In the future, it would be beneficial if the details within these energy 
balances could be increased for the heat sector. In line with this, we would like to thank 
the European Commission for providing all of the data possible during the limited 
timeframe of this study 
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FINAL RECOMMENDATION 

This pre-study has demonstrated the potential increase in energy efficiency and renewable energy 

consumption associated with district heating, so a full research study is recommended to further 

elaborate on the methodology applied in this pre-study. 
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NOMENCLATURE 

 

Abbreviation Description 
CC Combined Cycle 
CEEP Critical Excess Electricity Production 
CEWEP Confederation of European Waste-to-Energy Plants, located in Brussels. 
CHP Combined Heat and Power 
CORINE The European land cover surveying system. 
CPI Current Policy Initiatives, future energy system scenario in the EC communication 

Energy Roadmap 2050. 
DH District Heating 
EC European Commission 
EEA European Environment Agency, located in Copenhagen. 
EnergyPLAN (EP) The energy system analysis tool used in the pre-study. 
EP CPI scenario A model of EU CPI scenario in the EnergyPLAN tool to validate the EU CPI reference 

from the Energy Roadmap 2050 report. 
EU European Union 
EU CPI scenario The future energy system scenario called Current Policy Initiatives (CPI) from the Energy 

Roadmap 2050 communication. This scenario was chosen as the reference scenario in 
this pre-study. 

HRE Heat Roadmap Europe, a label for a planned research project initiated by this pre-study. 
HRE scenario The first step in the future energy system scenario developed within this pre-study. It 

only includes the efficiency improvements due to increased CHP with district heating. 
This scenario is benchmarked against the EU CPI scenario. 

HRE RE scenario The second step in the future energy system scenario developed within this pre-study. 
It includes both energy efficiency improvements and the utilisation of additional 
renewable energy resources due to the implementation of district heating. 

IEA International Energy Agency, located in Paris. 
IEA 2010 The historical reference scenario used in this pre-study. The most recent EU27 energy 

balance available from the IEA is for 2009, so this was used to represent the 2010 
reference scenario, which is called IEA 2010. 

ISWA International Solid Waste Association, located in Vienna. 
NUTS Nomenclature of Statistical Territorial Units, defined by Eurostat. 
NUTS3 The third level of the European NUTS system defining the national administrative 

regions. 
PES Primary Energy Supply 
PP Power Plants 
PRIMES The energy systems model used for energy modelling in the EC communication Energy 

Roadmap 2050. 
RE Renewable energy 
WTE Waste-to-energy, label for defining waste incineration plants with energy recovery 
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1. INTRODUCTION 

1.1 CURRENT HEAT MARKET CONTEXT 

The current heat market for residential and service sector buildings within EU27 is about 3200 

TWh/year according to Figure 9. The market share for district heating in this heat market for 

buildings is 12%, giving heat deliveries of about 380 TWh/year. District heat is also used for low-

temperature heat demands in the industry. These heat deliveries are about 230 TWh/year. These 

two major customer groups add up to the total volume of heat sold from district heating systems 

to about 610 TWh/year. Further 220 TWh/year is delivered from industrial CHP plants to industrial 

demands. Hence, the total turnover in the EU27 heat balance for final consumption amounts to 

about 830 TWh/year. The exact division between district heating systems and industrial CHP plants 

is very diffuse in international heat statistics. Hereby, it is also difficult to identify the real extent of 

district heating in EU27, but the simple division estimated above will be used in this pre-study. 

Currently, the heat market for buildings is dominated by two thirds of heat supply from fossil fuels 

according to Figure 9. This gives a future opportunity for district heating to expand by substituting 

fossil fuels in order to reduce primary energy supply and carbon dioxide emissions. This expansion 

can be fulfilled by expanding heat recycling and renewable energy use in existing and new district 

heating systems. A proper assessment by energy modelling is still missing for this possible 

expansion for the whole EU27. However, some assessments have been performed for some 

countries and cities. One country example is the two Varmeplan Danmark reports for Denmark 

[48, 49] and one city example is the renewable plan for the Munich district heating system [50], 

introducing geothermal heat as the future base load. 

The main purpose with this pre-study is to pave the road for a proper assessment of a future 

expansion of district heating within EU27. The focus is on more heat deliveries to the residential 

and service sector buildings. 

 

Figure 9: Composition of the origin for heat supply to residential and service sector buildings in EU27 during 2008. Labels refer to the 

standard commodity groups used in the IEA energy balances. Heat denotes mainly heat from district heating systems. Data sources: 

IEA energy balances for 2008 complemented with some external estimation. One EJ is 1018 Joule, equivalent to 1 million TJ or 278 

TWh.  
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1.2 CURRENT EU ENERGY POLICY CONTEXT  

The European Union does not have a specific energy policy or directive concerning district heating. 

However, the specific directives for combined heat and power, industrial emissions, emissions 

trading, energy performance in buildings, renewable energy, waste management, energy taxation 

and energy efficiency (forthcoming) are examples of the EU regulatory framework for district 

heating. 

The latest projection within the EU energy policy context concerning future heat deliveries from 

district heating systems and industrial CHP plants is the specific Energy Roadmap 2050 

communication [3], published in December 2011. This communication followed the more general 

communication from March 2011 called A Roadmap for moving to a competitive low carbon 

economy in 2050 [51]. However, the description of the heat sector is not complete in this future 

projection, since the complete energy balance for the whole heat sector is missing in the 

corresponding impact assessment report [40]. 

 

Figure 10: Expected heat deliveries for each of the seven main scenarios in the Energy Roadmap 2050 communication [40] compared 

to available heat statistics from Eurostat and IEA for the recent years. We have estimated the current total use level by adding some 

missing heat deliveries from industrial CHP plants to industrial purposes in the current statistics. This addition has been made in 

order to reduce the confusion created by the current routines for international heat statistics. 

The development of the heat deliveries in each of the seven scenarios elaborated in Energy 

Roadmap 2050 is presented in Figure 10. The diagram is somewhat confusing with respect to the 

future development. The first years in the projection lack some heat deliveries from industrial CHP 

plants to industrial purposes since they are based on existing heat statistics lacking these heat 

deliveries. On the other hand, the energy modelling from 2015 and onwards includes all CHP heat 

deliveries. Hereby, the diagram gives a false optimistic view of the real expected development. 

Therefore, we have added our own estimations of the total heat deliveries for the period of 2002-

2008, estimated with additional input from the specific Eurostat statistical reports concerning CHP 
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heat generation in EU27. The average of these years amounts to about 830 TWh/year, the same 

level earlier identified in the preceding sub-section about the heat market context.  

The expected development becomes then an increase with almost 20% until 2030 and with almost 

40% until 2050 in the Energy Roadmap 2050 reference scenario, indicating an annual expansion 

rate lower than 1% per year. However, this expansion is unevenly distributed among the two 

major customer groups. Heat deliveries to industrial purposes are expected to increase with 48% 

until 2030 and with 87% until 2050, while heat deliveries to residential and service sector buildings 

are expected to decrease with 13% until 2030 and with 22% until 2050. 

Two questions arise directly from analysing the projection of the heat deliveries in Energy 

Roadmap 2050: Have local synergy options been considered at all? To what extent have 

substitution of electricity and gas use by excess heat recovery been conceived?  

The conclusion is then that the European Commission does not foresee any radical expansion of 

the heat deliveries from district heating systems and industrial CHP plants in the future. Since all 

decarbonisation scenarios give lower heat deliveries than in the reference scenario, the European 

Commission has not identified district heating and industrial CHP as a major future 

decarbonisation tool within the energy system. Hence, Energy Roadmap 2050 has not estimated 

the outcome from a radical expansion of European district heating systems. 

A major explanation for the absence of a scenario with more district heating in the Energy 

Roadmap 2050 communication is that the PRIMES model have been used for the energy system 

analysis. As we have identified from studying the background references for Annex II, the PRIMES 

model do no aggregate local conditions and possibilities relevant for expanding district heating 

systems. The PRIMES model is also a market equilibrium solution based on current energy 

technologies. Then by its nature, the model favours business-as-usual scenarios, giving fewer 

possibilities for radical technological changes. 

1.3 OUR BASIC METHODOLOGY 

For this pre-study, we have used a methodology based on a combination of energy modelling and 

mapping of local conditions reflecting the possible future district heating opportunities. This 

approach is not completely new. The same methodology was used in the Heat Plan Denmark 

(Varmeplan Danmark) project [48, 49] with a very high geographical resolution for the mapping of 

local conditions. 

The link between the energy modelling part and the mapping part is rather weak in this pre-study. 

The aim with a planned full study is to explore how this link can be stronger. The mapping part is 

only used as an indicator of how intensive an expansion of district heating can be in 2030 and 

2050. 

The main target area for the analysis is the aggregated area of the European Union with 27 

member states (EU27). Since the mapping of local conditions concerns all countries within the 

European Union; the mapping information can be used for separate analyses for each country. 
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1.4 ENERGY SYSTEMS ANALYSIS TOOL: ENERGYPLAN 

EnergyPLAN was deemed suitable as an energy system analysis tool for this pre-study. EnergyPLAN 

has been developed and expanded on a continuous basis since 1999 at Aalborg University, 

Denmark [3]. Approximately ten versions of EnergyPLAN have been created and it has been 

downloaded by more than 1200 people. The current version can be downloaded for free from [4] 

while the training period required can take a few days up to a month, depending on the level of 

complexity required. 

EnergyPLAN is a user-friendly tool designed in a series of tab sheets and programmed in Delphi 

Pascal. The main purpose of the tool is to assist the design of national or regional energy planning 

strategies by simulating the entire energy-system: this includes heat and electricity supplies as well 

as the transport and industrial sectors. All thermal, renewable, storage/conversion, transport, and 

costs (with the option of additional costs) can be modelled by EnergyPLAN. It is a deterministic 

input/output tool and general inputs are demands, renewable energy sources, energy station 

capacities, costs, and a number of different regulation strategies for import/export and excess 

electricity production. Outputs are energy balances and resulting annual productions, fuel 

consumption, import/export of electricity, and total costs including income from the exchange of 

electricity. The energy system is modelled on an hourly basis over a period of one year, which 

ensures that the system can be operated reliable even with high penetrations of intermittent 

renewable energy. In the programming, any procedures which would increase the calculation time 

have been avoided, and the computation of one year requires only a few seconds on a normal 

computer. Finally, EnergyPLAN optimises the operation of a given system as opposed to tools 

which optimise investments in the system. 

Previously, EnergyPLAN has been used to analyse the large-scale integration of wind [5] as well as 

optimal combinations of renewable energy sources [6], management of surplus electricity [7], the 

integration of wind power using Vehicle-to-Grid electric-vehicles [8], the implementation of small-

scale CHP [9], integrated systems and local energy markets [10], renewable energy strategies for 

sustainable development [11], the use of waste for energy purposes [12], the potential of fuel cells 

and electrolysers in future energy-systems [13, 14], the potential of thermoelectric generation 

(TEG) in thermal energy-systems [15], and the effect of energy storage [16], with specific work on 

compressed-air energy storage [17, 18] and thermal energy storage [3, 5, 19]. In addition, 

EnergyPLAN was used to analyse the potential of CHP and renewable energy in Estonia, Germany, 

Poland, Spain, and the UK [20]. EnergyPLAN has been used to simulate a 100% renewable energy-

system for the island of Mljet in Croatia [21] as well as the countries of Ireland [22] and Denmark 

[23, 24]. Other publications can be seen on the EnergyPLAN website [4], while an overview of the 

work completed using EnergyPLAN is available in [25] and a comparison with other tools is 

available in [26]. 

1.5 MAPPING LOCAL CONDITIONS 

A major setback in standard generic energy modelling is that national conditions constitute the 

basis for analysis. By such an approach, energy assets, demands, and distribution structures are 

viewed from an aggregated perspective not permitting insight into unique local circumstances and 



 

    
 

21 

conditions. Such perspectives may be well suited when considering cross-border technologies and 

energy carriers, e.g. electricity and gas grids, since such commodity flows are integrated and visible 

in international energy statistics. But, for analyses aiming to include genuinely local technologies, 

e.g. district heating and cooling systems, such perspectives generally tend to be too blunt to detect 

and capture synergy options strictly limited to the local dimension.  

The ambitious European targets to increase energy efficiency in future power and heat distribution 

and use acts as a force to address local conditions in a more systematic and thorough sense than 

previously elaborated. The main reason for this is simply that only local conditions disclose 

obtainable synergies between local heat assets and prevailing heat demands. Only at the local 

level, the excess heat from various activities and sources can be utilised by recovery and 

distribution in district heating systems. For this reason, one fundamental idea for the planned Heat 

Roadmap Europe Project is to deliberately break-up national boundaries and use local conditions 

as a foundation for the analysis, as it strives to identify, map, and quantify feasible and cost-

effective synergy locations in Europe. 

For this purpose, we have used the NUTS3 regions defined by Eurostat as primary level of analysis 

for mapping local conditions in order to get relevant input to the energy modelling. These 

administrative regions are available for 34 European countries with 1461 defined regions. The 27 

Member States of the European Union consists of 1303 NUTS3 regions, see Figure 11. However, 

the population in each NUTS3 region varies considerably according to Figure 12. About 90 NUTS3 

regions have more than one million inhabitants. By using these predefined administrative regions, 

other statistical variables are easily available from the Eurostat databases. 
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Figure 11: The NUTS3 regions of Europe, of which 1303 are located within the EU27. 

 

Figure 12: The distribution of the population in each NUTS3 region. 

NUTS data © EuroGeographics for the administrative boundaries

NUTS3 regions

EU27

Non EU27
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2. REFERENCE SCENARIO FOR 2010, 2030 AND 2050 

2.1 CHOICE OF REFERENCE SCENARIO 

Before evaluating an alternative energy roadmap for Europe based on district heating, a reference 

scenario needs to be defined. This reference scenario should represent a business-as-usual 

development which alternative scenarios can be benchmarked against. To begin, a review of other 

energy strategies was carried out to identify a suitable reference scenario for this study. 

Firstly, it was evident that the most detailed historical breakdown of the EU27 energy system is 

created by the International Energy Agency (IEA) in their annual energy balances reports [1, 2]. At 

the time this project was being completed, the most recent energy balance available from the IEA 

for the EU27 was based on the year 2009. Hence, the year 2009 is used in this study as the 2010 

reference energy system. The IEA data acts as a crucial baseline in this study, since the detailed 

breakdown of the EU27 energy system available for 2009 can act as a guideline when making 

assumptions for the energy balances in forecasted years. Since the IEA do not create forecasted 

energy balances, a separate energy balance needed to be identified as the reference for the future 

years. 

A brief description of some of the most recent reports regarding low or zero carbon emission goals 

for future years is seen in Annex I. This also includes the role of district heating in each of the 

reports. Most of the reports state that combined heat & power (CHP) and/or district heating are 

important, but fail to quantify to which extent these options can be used to move towards a low or 

zero carbon emission energy system. In the few reports where it is more than just briefly 

mentioned, it still is not included as a major role. The reason for neglecting CHP may not be a lack 

of relying on the technology, but the absence of suitable models to include it. In the Energy 

Roadmap communication [27] from the European Commission, the following statement is seen: 

“An analysis of more ambitious energy efficiency measures and cost-optimal policy is required. 

Energy efficiency has to follow its economic potential. This includes questions on to what extent 

urban and spatial planning can contribute to saving energy in the medium and long term; how to 

find the cost-optimal policy choice between insulating buildings to use less heating and cooling and 

systematically using the waste heat of electricity generation in combined heat and power plants.”  

This quote clearly reflects the need for an energy scenario which includes smart electricity and 

heat grids, storages, CHP, and district heating to an extent that can elucidate the full potential of 

these technologies. To neglect this unresolved significant part of the energy solution might result 

in unnecessary costs for decarbonising the European energy system or even a failure in reaching 

the emission goals for the European Union. 

The EC published in March 2011 A Roadmap for moving to a competitive low carbon economy in 

2050 [51], which analysed cost-effective ways of reducing greenhouse gas emissions. It was 

intended to act a basis for developing sector specific initiatives and roadmaps such as the Energy 

Roadmap 2050 which was published in its final version in December 2011. After completing the 

review of existing energy strategies, the Current Policy Initiatives (CPI) scenario from the Energy 
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Roadmap 2050 report was deemed the most suitable forecast for this study. The report is the 

latest of the documents described in Annex I and the CPI scenario includes the current European 

energy policies. It represents an update of another scenario (called “Reference scenario”) in the 

same report which means that besides the EU 2020 targets for renewable energy sources and 

greenhouse gas reductions as well as the Emissions Trading Scheme Directive, the CPI scenario 

includes the latest developments in energy prices, energy taxation, efficiencies, infrastructure and 

policy (such as Germany’s decision on a phase-out of nuclear power and Italy cancelling their 

nuclear programme, although the report does assume that the amount of level of nuclear plants in 

the EU27 will increase again to the current level after decreasing towards 2030).  

The CPI scenario is based on the assumption that there will be no changes in European energy 

policies beyond the publication of the report. It is described not as a forecast but a projection of 

what will happen if the market forces at all times determines the energy solution in the present 

economic, technological and political situation1. The PRIMES model – which is described in Annex II 

– was used to develop the projections in Energy Roadmap 2050.  

Another key reason for choosing the Energy Roadmap 2050 is that this is the research which EU 

policy is based on: it is the European Commission’s own prediction of the future energy system in 

Europe. However the EU27 energy balances available for the CPI scenario are not as detailed as 

the IEA 2009 EU27 energy balance. Hence, the IEA energy balance can act as a proxy when detailed 

assumptions are necessary for the scenarios in this study. 

To summarise, three years will be considered in this pre-study: 2010, 2030, and 2050. The IEA 

EU27 energy balance for 2009 will be used to create the 2010 reference, while the CPI scenario 

from Energy Roadmap 2050 will be used to create the business-as-usual forecasts for 2030 and 

2050. These forecasts will be referred to as EP CPI 2030 and EP CPI 2050 respectively. 

Finally, there are two key differences between the scenarios in the Energy Roadmap 2050 and this 

pre-study. The first key difference is the energy tool utilised: in the Energy Roadmap 2050 report, 

the PRIMES tool was used to develop the forecasts for the EU27 along with individual forecasts for 

each of the member states. PRIMES use a market equilibrium tool, which operates using a five year 

time-step over a duration time of 50 years. Hence, it is a combination of macro-economic forecasts 

with technical restrictions on the energy system, where the primary goal is to establish how 

various policies will influence the evolution of the energy system being considered. The focus in 

this pre-study is different and hence, a different energy tool is utilised.  

In this pre-study, the aim is not to establish forecasts, but instead to perform a detailed technical 

analysis of the EU27 energy system to establish the role district heating based on hourly 

calculations over a duration time of one year. Therefore, the optimisation will be based on 

technical performance instead of market conditions and the operation of the system will be 

evaluated on an hourly basis. The evaluation of heating systems and the interaction between wind 

power, nuclear, CHP plants and heat pumps requires an hourly resolution to evaluate the high 

                                                           
1
 Average growth rate is assumed to be 1.7% p.a. The oil price is 106 US$/barrel in 2030 and 127 US$/barrel in 2050 (in year 2008 

dollars). This is higher than the IEA Technology Perspectives where the expectations for the economic growth are 3.1% p.a. on an 
average between 2007 and 2050. 
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level of interaction between the electricity, heat, and transport sectors in a future smart energy 

system. Such systems cannot be analysed with resolutions that do not reflect the intermittent 

resources and their connection with the demands. For these reasons the analysis tool called 

EnergyPLAN (EP), which has been described in detail in section 1.4, will be used in this pre-study 

for both the reference forecasts (henceforth referred to as EP CPI) and the Heat Roadmap Europe 

scenario. 

The second key difference between the Energy Roadmap 2050 report and this pre-study is the 

resolution considered when defining the district heating alternatives. The approach in this pre-

study has been to analyse specific local conditions within the EU27 member states to assess the 

overall EU27 potential for district heating. This has been performed using a detailed database of 

existing district heating networks, heat loads, and potential heat supplies along with some 

mapping tools to see how they fit together. 

2.2 FINAL ENERGY CONSUMPTION WITH CURRENT EU POLICIES 

As outlined in Figure 13, the energy consumed in industry increases the most from 2010 to 2050, 

while the residential, services, and agricultural sectors either decrease or show negligible growth. 

The transport sector increases slightly between 2010 and 2030, but subsequently decreases 

between 2030 and 2050. It is important to note here that the decrease in transport energy 

consumption between 2030 and 2050 may not reflect a decrease in transport demand. For 

example, there is a large increase in more efficient transport technologies between 2030 and 

2050, specifically in relation to electric vehicles which increase by 220% over this period. Hence, 

although the energy demand for transport reduces, the overall transport demand may not. 

Quantifying this would require a more detailed assessment of the transport sector, similar to the 

analysis completed in the CEESA project [28]. 

 

Figure 13: Final energy consumption by sector in the reference scenarios for 2010, 2030, and 2050. 
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In relation to fuel, the total energy consumption is divided by fuel in Figure 14. Here it is evident 

that electricity consumption increases by approximately 20% from 2010 to 2030 and by 

approximately another 20% between 2030 and 2050. The largest reductions are in oil and gas, 

which suggests that conventional thermal combustion technologies (such as boilers) are replaced 

by electricity. Other interesting trends include a relatively large increase in solar thermal, 

biomass/waste, biofuels, and heat.  

However, as outlined in Figure 15 and earlier presented in section 1.2, the increase in heat 

consumption is entirely related to industry and not to the residential or services sectors. Once 

again this suggests that low-temperature district heating applications (which is primarily space 

heating) are not utilised, but instead individual oil and gas boilers are replaced with electricity. This 

demonstrates the importance of this study, which will focus specifically on the role of low-

temperature district heating in the future EU27 energy system. 

 

Figure 14: Final energy consumption by fuel in the reference scenarios for 2010, 2030, and 2050. 
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Figure 15: Expected customer groups for district heating and industrial CHP heat in the Energy Roadmap 2050 reference scenario. 

Source: [40]. We have added the current deliveries of industrial CHP heat to industrial for 2005 and 2010 missing in the Energy 

Roadmap 2050 impact assessment. 

2.3 MODELLING THE REFERENCE SCENARIOS IN ENERGYPLAN 

After profiling the reference energy scenarios using the statistics from the IEA and the Energy 

Roadmap 2050 project, these years then needed to be modelled in the EnergyPLAN tool. While 

doing so, a number of key assumptions were made in relation to the heating sector. Firstly and 

most significantly, profiling the growth in industrial CHP proved very difficult within the timeframe 

of this study. This was primarily due to the different methodologies and lack of data for industrial 

CHP fuel consumption, electricity production, onsite heat consumption, and heat sold. For 

example, the IEA energy balance does not outline the heat consumed onsite for industrial CHP, but 

instead this is documented within the final energy consumption of industry. In contrast, the data 

from the Energy Roadmap 2050 documents all fuel consumed by industrial CHP together with non-

industrial CHP fuel consumption. Hence, these datasets had to be treated differently when 

profiling industrial CHP in the different years.  

Also, in this study only district heating for the residential and services sectors is considered, so all 

fuel consumed for district heating relating to industry was removed from the district heating 

simulations and documented separately as an industry fuel consumption. Since two separate 

datasets were being used, both with limited data and different documentation methodologies, this 

process also required a number of assumptions relating to CHP efficiencies and fuel mixes. 

In addition, no data was obtained during this study in relation to the electricity and heat sold by 

industrial CHP to the electric and district heating grids respectively. However, these statistics were 

available in the IEA energy balance for 2009 and hence, it was assumed that both the electricity 

produced and heat consumed would increase proportionally with the total final heat demand for 

industry outlined in Figure 15. As a result, industrial CHP produces approximately 10% of total 

electricity production in 2050. 
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Since industrial CHP increased, so did the heat sold to district heating grids by industry. However, 

not all of this heat is used by the residential and services sectors for low-temperature district 

heating applications since some of this heat is used by industry. It was not possible to establish 

from any statistics available what proportion of this heat is reused in industrial processes and 

hence, it was assumed that industry consumed same proportion of the total heat demand that 

industry made up. In other words, industry reused the same proportion of heat that it represented 

in Figure 15. 

Another important assumption in the pre-study relates to centralised power plants (PP) and CHP. 

In the statistics, the fuel consumption recorded under CHP includes the fuel consumed by CHP 

plants operating in condensing power plant (PP) mode. As a result, the total efficiency for CHP is 

unrealistically low: for example, in 2009 the heat efficiency of CHP would be approximately 20% if 

all fuel documented under CHP was allocated as fuel consumed during CHP mode, whereas 

typically the heat efficiency of CHP is approximately 50%. This assumption was verified when the 

IEA energy balance for Denmark was analysed: here all fuel for power plants was recorded as CHP 

even though they often operate in PP mode only. Hence, to divide the fuels recorded under CHP 

into fuels for CHP in PP mode and fuels for CHP in CHP mode, 50% heat efficiency was assumed for 

CHP plants to estimate their total fuel consumption and the remainder was allocated to PP mode. 

The final significant assumption relating to the modelling concerns the various plant efficiencies. 

Using the detailed breakdown in the IEA EU27 2009 energy balance, the efficiency of different 

units could be estimated: for example, the power plant efficiency was estimated at approximately 

39%. In the 2030 and 2050 scenarios, the efficiency of PP is progressively increased by 3% and 6% 

respectively, to account for technological developments. A detailed breakdown of the data used 

and how it was interpreted is available in Annex III, while an overview of the key results is provided 

below. 

2.4 VERIFICATION OF THE EU CPI SCENARIO 

Based on these assumptions, the reference scenarios for 2010, 2030, and 2050, could be modelled 

in the EnergyPLAN tool for this HRE study. As displayed in Figure 16, the resulting simulations in 

EnergyPLAN were very similar for 2010: the primary energy supply (PES) is only 0.5% larger in the 

EP IEA scenario than in the IEA statistics. For 030, the EU CPI scenario is the same, but as displayed 

in Figure 16, for 2050 there is a concerning difference since the PES is 2.7% larger in the EP CPI 

scenario than in the EU CPI statistics. Hence, this warranted a further investigation. 
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Figure 16: Primary energy supply by fuel in the reference scenarios according to the statistics and the EnergyPLAN models. 

From the hourly simulations in the EnergyPLAN tool for the EU CPI scenario, it is evident that the 

difference in 2050 is most likely caused by the critical excess electricity production (CEEP). CEEP is 

the amount of intermittent renewable electricity which is produced, but cannot be used for a 

variety of reasons such as grid stabilisation issues, supply exceeding demand, or a lack of flexibility 

(demand and supply side) within the energy system. In the 2050 EP CPI simulation, there is 

approximately 220 TWh of CEEP and no imports required. This outlines the benefits of Energy 

Plan’s hourly modelling, since it indicates that the 2050 EU CPI scenario is not technically feasible 

unless 220 TWh of CEEP is created: this is approximately 5% of the total electricity production and 

20% of total wind production. 

Since renewable energy is not providing this electricity in the EP CPI scenario, it must be produced 

by other power plant units. Based on the assumed power plant efficiency in the analysis of 48.5%, 

the extra fuel required is approximately 455 TWh (see the 2050 dataset in Annex III). When the 

relatively small losses created due to pumped hydroelectric energy storage are also considered, 

then the total additional fuel required from power plants is approximately 484 TWh, which is very 

similar to the extra fuel demand recorded in the simulation of 510 TWh (see the 2050 dataset in 

Annex III). The remaining difference of 25 TWh is small enough to be caused by modelling 

differences. As a result, it seems that the hourly analysis in EnergyPLAN has uncovered some 

balancing issues in the electricity sector within the EU CPI scenario, so the EU27 energy system 

could require more flexibility if the intermittent renewable energy targets forecasted are to be 

realised. 

In summary, the 2010 and 2030 EP CPI reference models are very similar to the statistics, with a 

maximum difference of approximately 0.5%. The 2050 EP CPI reference is different and after 

analysing the hourly operation of the system, the most likely cause of this is the additional 222 

TWh of CEEP in the energy system. This CEEP is most likely due to large amount of non-adjustable 
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base load combined with a large proportion of intermittent renewable energy production in the 

2050 EU CPI scenario, but this could not be evaluated in detail in the timeframe of this study. More 

details about the EP CPI reference models are presented later, when they are compared to the 

district heating alternatives. 

Finally, it is important to recognise the role of the EP CPI reference models created in this section. 

These simply act as the baseline to which the district heating scenarios are compared and so the 

district heating alternatives will not benefit from the CEEP differences outlined here. However, to 

ensure that this is the case, the new district heating alternatives in this pre-study will be modelled 

in both the historical 2010 energy system as well as the forecasted EU CPI scenarios for 2030 and 

2050. 
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3. HRE SCENARIO FOR 2030 AND 2050 

This section contains mainly the mapping of local conditions relevant for the expansion of district 

heating systems. It ends with the positions used as input to the EnergyPLAN model in the HRE 

scenario. 

3.1 CURRENT DISTRICT HEATING SYSTEMS AND THEIR LOCATIONS 

District heating systems can to be found all over Europe today, but levels of expansion differ 

significantly between EU27 Member States. While occupying dominating national heat market 

shares between 40-60% in some Scandinavian and Baltic Member States, district heating systems 

cover currently 12% of the European heat market for buildings in the residential and service 

sector. The corresponding market share for the industrial sector is about 9% [39]. The European 

district heating systems have networks containing distribution pipes with a total trench length of 

almost 200,000 km. Total revenues for heat sold are about €30 billion per year. 

Since district heating mainly is an urban occurrence, due to the dependency on concentrated heat 

demands for feasible heat distribution, it is relevant to express levels of expansion in terms of 

urban heat market shares. As a European average, district heat constitute about 15% of current 

urban heat markets, while these fractions can reach as high as above 90% in some cities with 

mature district heating systems. 

The spread and dissemination of European district heating technology can be seen in Figure 17, 

where each red dot marks a city with at least one district heating system in operation. The map is 

based on the current content in the Halmstad University District Heating and Cooling Database. 

Some current numbers from the database are summarised in Table 1. The database is not 

complete, since about 6000 district heating systems currently operate in Europe, of which 5400 

are located within EU27. The deficit consists mainly of small systems in Germany, France and 

Poland. 

This overview shows that it is possible to track NUTS3 regions which have existing experience of 

district heating systems in operation. An expansion of existing systems in these regions should be 

possible. 
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Table 1: Overview of numbers of district heating systems in Europe according to the current 

content of the Halmstad University DHC database. 

 All 
Europe 

EU27 Population 
concerned 

within EU27, 
million 

Proportion of 
population 
concerned 

within EU27 

Number of systems 4174 3549 60 12% 

in cities and towns over 5000 
inhabitants 

2779 2431   

Number of cities concerned 3482 3070 140 28% 

- in cities and towns over 5000 
inhabitants 

2428 2161   

Number of NUTS3 regions concerned 658 599 287 57% 

Total number of NUTS 3 areas 1461 1303 500 100% 

 

Figure 17: District heating systems in Europe by city size and for cities having more than 5000 inhabitants. The map shows 2428 cities 

with 2779 systems. Source: Halmstad University DHC Database. 

 



 

    
 

33 

3.2 URBAN AREAS WITH HEAT DEMANDS 

A key parameter in the project is to produce reliable assessments of low temperature heat 

demands for space heating and domestic hot water preparation in each NUTS3 region, since these 

heat demands constitute the main target for district heat distribution. Low temperature heat 

demands for space heating and domestic hot water preparation in residential and service sectors 

can be estimated for each NUTS3 region from average specific heat demands unique for each EU27 

Member State, by subsequently relating these to total population counts within each NUTS3 

region in respective Member State. To distinguish further the share of NUTS3 region residential 

and service sector heat demands that constitute a basis for district heat distribution, the project 

will exploit the features of the European CORINE 2000 GIS database to reveal the concentration of 

heat demands in urban areas. In this database, the European land area is defined according to 

different land cover types, and hence, it is possible to identify the proportion of urban areas within 

each NUTS3 region. An excerpt from this database is presented in Figure 18, showing the land 

cover types in Belgium. An overview of these proportions is presented in Annex IV in Figure 38. 

 

 

Figure 18: The land cover types for Belgium as an example from the CORINE database. 
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In 2010, about 73% of all 502 million EU27 residents lived in urban areas, according to United 

Nations World Urbanization Prospects [37], indicating that the major part of residential and service 

sector low temperature heat demands are located in urban and city areas. This condition is in itself 

a strong argument for increased use of district heating in Europe. The forecast for the future 

indicate further that urban population fractions in EU27 will continue to increase and are 

estimated to be 75% in 2020 and 84% in 2050. Although, it should be noted that such aggregated 

estimates for the entire EU27 are to be considered as indicative only. The reason for this being that 

no harmonised definition of “urban area” currently is available, why Member States employ 

national definitions. 

In the extension of this project, as the results will be disseminated to regional energy planners and 

local authorities, the features of the European CORINE 2000 GIS database will provide additional 

benefit. Information on land cover types and - especially - urban tissue distribution will be 

important when sub-penetrating the NUTS3 region level to out-line feasible distribution distances 

from available heat sources to existing and future district heating systems. By thus offering spatial 

guidance and geographical support when identifying and analysing European synergy 

opportunities and locations, the European CORINE 2000 GIS database constitute a corner-stone in 

the tool-package of the project. Specific urban areas are also available in the EU Urban Atlas 

program. 

3.3 CURRENT EXCESS AND RENEWABLE HEAT STREAMS BY REGIONS 

In the Ecoheatcool study [30], the future possible heat resources from combined heat & power, 

waste-to-energy, heat recycling of industrial excess heat, geothermal heat, and biomass was 

quantified on an aggregated level for 32 European countries. Those findings can be summarised as: 

 Approximately 17% of all residual heat from thermal power generation was recycled into 
district heating systems or used directly for industrial demands 

 Only 1% of the European biomass potential was used in district heating systems for urban 
heat demands 

 Approximately 7% of the calorific value of non-recycled waste was utilised as heat in district 
heating systems 

 Only 3% of the direct available industrial excess heat was recycled into district heating 
systems 

 Less than 0.001% of the geothermal resources suitable for direct use was utilised in district 
heating systems 

 

Hence, there is no shortage of available heat resources in short and medium term. The Heat 

Roadmap Europe project aims at finding the locations for these future heat resources in order to 

facilitate an expansion of district heating in Europe.  

To provide an alternative projection of future European heat supply in contrast to the generic 

model approach of the Energy Roadmap 2050, key parameters to identify in the Heat Roadmap 

Europe project will be the availability of alternative local heat resources and current excess heat 

streams. Thus using a bottom-up approach to include local conditions, the project aims at 
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establishing balances between demands (local heat demands in residential and service sectors) 

and sources (available local excess heat and renewables) in each NUTS3 region.  

In combination with spatial information and geographical data for each locality and activity, the 

project aims at finding regions with exceptional good conditions for establishing new and 

expanding existing district heating systems. However, the idea of using GIS based spatial planning 

for finding district heating opportunities is not new. This approach was used in Sweden in 2003 in 

order to identify more aggregated heat loads for higher utilisation of industrial excess heat and 

combined heat and power [41]. A similar project in the UK gathered information about industrial 

heat loads [42]. The knowledge gained in that project is now available as interactive Internet maps 

for the CHP development [43] and the recently released National Heat Map [44]. A similar 

approach has also been used to give an overview of the European power plant infrastructure [45]. 

Hence, both information availabilities and presentation methods have made it possible to leave 

national energy balances in favour of local energy balances in future energy modelling. 

Current excess and renewable heat streams are found mainly in thermal power generation, waste-

to-energy incineration facilities, energy intensive industrial processes, geothermal fields, biomass 

availabilities, and annual solar irradiancies. An overview is given below with respect to available 

information sources about their locations with respect to NUTS3 regions. 

3.3.1 COMBINED HEAT AND POWER 

The possibility of combined heat and power is based on the need of thermal power generation in 

the European power balance. Recycling of heat from these plants will reduce their heat losses to 

the environment and substitute the current use of fossil fuels for space heating and hot water 

preparation in buildings. The locations of major thermal power stations using fuel combustion are 

presented in Annex IV in Figure 40. However, many of these installations already operate as 

combined heat and power plants. 

3.3.2 WASTE-TO-ENERGY (WTE)  

Waste incineration with energy recovery belongs to the fourth recovery step of the waste 

management hierarchy after prevention, re-use, and recycling in the Waste Framework Directive. 

The primary purpose with waste incineration is to avoid the environmental problems associated 

with landfills, the fifth and final step in the waste management hierarchy. As presented in Figure 

19, the use of landfills is still very extensive for municipal solid waste in many EU Member States, 

since 92 million tonnes of municipal solid waste reached landfills during 2010 according to [46]. 

Also industrial waste streams are available for waste incineration. Less than half of the current 

waste supplied to the Swedish WTE plants is municipal solid waste. 
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Figure 19: Distribution of municipal solid waste treatment in EU27 Member States during 2010 according to the waste hierarchy 

order categories. Source: [46]. 

The locations of the 414 WTE plants currently operating within EU27 are presented in Annex IV in 

Figure 41. These plants receive about 65 million tonnes of waste per year, representing a calorific 

heat value of between 180 and 200 TWh. Currently, less than half of this calorific heat value is 

recovered as electricity and heat. During 2009, only 45 TWh heat was recycled from these 

European WTE plants according to the Eurostat heat balance. 

Hence, more heat can be recycled from WTE plants, both from better utilisation of existing plants 

and establishment of new WTE plants. 

3.3.3 INDUSTRIAL EXCESS HEAT 

Industrial excess heat is normally recycled from five typical energy intensive industrial sub-sectors 

(chemical/petrochemical; iron and steel; non-ferrous metals; non-metallic minerals; and pulp and 

paper production) and oil refineries. Current recycling of industrial excess heat is difficult to 

discover since it is not reported in international energy statistics. The only bodies that report these 

heat streams are national district heating associations gathering own national statistics. An 

overview of these heat streams is presented in [39] for 2008: 0.3 TWh in France, 4.9 TWh in 

Sweden, 0.8 TWh in Denmark, 0.9 TWh in Germany, and 0.03 TWh in Italy. These volumes add up 

to 6.9 TWh for the whole EU27. But this estimation is probably an underestimation, since the 

situation in many other countries is unknown. 

The locations for major industrial plants having excess heat are presented in Annex IV in Figure 42. 

Many of these plants are located near to urban areas giving the possibility of transferring the 

excess heat to heat consumers in district heating systems. 
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3.3.4 GEOTHERMAL HEAT 

European Geothermal Energy Council (EGEC) reported recently [47] that 212 district heating 

systems in Europe use partly input from geothermal heat. According to Eurostat energy statistics, 

systems in Belgium, Denmark, Germany, Lithuania, Hungary, Austria, and Slovakia utilised 0.7 TWh 

during 2009. But systems also appear in France, Poland, Romania, and United Kingdom. The French 

systems used 0.8 TWh during 2009 according the national SNCU statistics. About thirty of them are 

situated in the Paris region. New major geothermal projects are implemented in Paris in France, 

Den Haag in Netherlands, and Vienna in Austria. EGEC foresees an expansion in many countries 

until 2014 according to Figure 20.  

The geothermal conditions vary by location in Europe. The estimated temperatures at a depth of 

2000 metres are presented by NUTS3 region in Annex IV in Figure 43. By joining population 

statistics with Figure 43, we can conclude that 4 % of the EU27 population live in NUTS3 regions 

with geothermal temperatures above 200ºC. The corresponding population proportions are 8 % 

for temperatures between 100 and 200ºC and 19% for temperatures between 60 and 100ºC. With 

an urban population of 73%, the proportion of the EU27 population that can be reached with a 

geothermal district heating systems is about 26%. These areas include major cities as Aalborg, 

Hamburg, Berlin, Munich, Frankfurt am Main, Hanover, Stuttgart, Groningen, Amsterdam, 

Rotterdam, Paris, Lyon, Strasbourg, Madrid, Barcelona, Budapest, and Bratislava. 

3.3.5 BIOMASS 

Biomass is currently used as original energy source in many European district heating systems. Fuel 

sources are mainly forestry and agricultural waste. According to the Eurostat heat balance for 

2009, 67 TWh heat with biomass origin was supplied into district heating systems. Sweden had a 

lead position with an input of 24 TWh, while other significant supply appeared in Austria, 

Denmark, and Finland. 

The long term demand of biomass for pulp & paper and other community resource demands will 

certainly be serious competitors for the overall biomass resource. However, in typical forestry 

areas, the availability of forestry wood waste can be sufficient for local district heating systems. A 

map-based overview of the European forestry areas is presented in Annex IV in Figure 44. 
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Figure 20: Number of geothermal district heating systems in Europe by country: Firstly as existing systems in 2011 and secondly as 

planned additions for 2014. Source: [47]. 

 

Figure 21: Overview of existing and planned solar collector fields connected to district heating systems in Denmark. Source: 

PlanEnergi. 
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3.3.6 SOLAR HEAT 

Some solar thermal installations in conjunction to district heating systems appear in Denmark, 

Germany, Austria, and Sweden. Denmark had a lead position with a solar heat supply of 0.03 TWh 

during 2009 according to the Eurostat heat balance. Denmark has also seen an increasing interest 

in more installations according to Figure 21. This large Danish interest has given lower installations 

cost for large solar collector fields, giving the possibility for other countries to benefit from this 

trend. 

The regional conditions for solar district heating depends on the location in Europe, since the 

global solar irradiation is about twice in Southern Europe compared to Northern Europe. The 

global irradiation for optimal angle by NUTS3 region is presented in Annex IV in Figure 45. 

3.3.7 CONCLUSION WITH RESPECT TO AVAILABLE LOCAL HEAT RESOURCES 

The main conclusion from this sub-section is that it should be possible to gather a future matrix of 

various local heat resources as columns and NUTS3 regions as rows from available information 

sources. Hereby, the local conditions for expansion of district heating can be estimated for each 

NUTS3 region with respect to heat sources. 

3.4 POSSIBLE EXTENSIONS OF DISTRICT HEATING SYSTEMS 

As presented in Figure 17, district heating is widely used in Europe today, although typically at 

moderate expansion levels. But, the wide presence of district heating systems today acts in favour 

of future extensions of existing systems, since it is a greater leap to introduce a completely new 

technology than it is to extend and expand an existing one. Technology know-how, component 

manufacturers, and business models are already present in many EU27 Member States, why 

possible extensions of current district heating systems are to be considered achievable from a pure 

practical point of view. 

Additionally, from an economic point of view, it has been established in a recent work [38] that 

urban district heating can threefold at competitive and directly feasible conditions from current 

urban heat market shares of approximately 20% up to market shares of 60%! In this work, focusing 

on city areas in France, Germany, the Netherlands, and Belgium, the current average urban district 

heating heat market share (21%) was slightly higher than the EU27 average (15%), indicating that 

average European extension possibilities are greater still. The main study result from [38] is 

depicted in Figure 22, where it can be seen that beneficial extension possibilities up to 60% urban 

district heating heat market shares are equally present in all four studied Member States. This high 

level of district heating extension further corresponds to a marginal distribution capital costs of 

only 2.1 €/GJ (7.6 €/MWh). 

One of several important aspects of the methodology in [38] is that it utilises local conditions, e.g. 

population and heat densities on sub-city levels, to produce the resulting estimates of specific 

investment costs for district heat distribution. By this methodology feature, high resolution 

modelling of feasible extensions or new establishments of district heating systems can be 
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performed for unique city districts, where the concentration of residential and service sector heat 

demands are taken into account for each assessment.  

In conjunction with information from the Eurostat Urban Audit, the European CORINE 2000 GIS 

database (mentioned in section 3.2), and other relevant data sources, modelling of specific 

investment costs for district heating systems are made possible by this methodology. 

 

Figure 22: Current marginal distribution capital cost levels and corresponding urban district heating heat market shares in four 

studied European countries in 2008 [38]. 

 

Figure 23: The simple socio-economic comparison between current import prices of fossil fuels and the heat distribution cost for 

connecting heat surpluses with heat demands. Current import price of crude oil has been set to 110 US$ per barrel. 
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It is worthwhile to linger for a moment on the suggested average annual cost of 2.1 €/GJ (7.6 

€/MWh) for feasible and competitive urban district heat distribution from this work. This specific 

investment cost represents a high level of European district heating extension and it can be 

compared to the current cost of heat from oil and natural gas. Given the current crude oil price for 

import to EU27 (April 2012) of 110 US$/barrel, the corresponding heat costs for imported crude oil 

and natural gas are presented in Figure 23. These import costs are substituted, when heat are 

recycled into district heating systems. The annual average cost for heat distribution according to 

[38] is included as the third bar in Figure 23. Hence, this cost for connecting heat sources with heat 

demands is much lower than the substituted costs, giving a very profitable situation. When 

comparing the investment cost for heat distribution with the substituted costs, the socio-economic 

payback becomes only 2-3 years. 

3.5 MOST PROMISING NUTS3 REGIONS (HOT SPOTS)  

The main objective in the full Heat Roadmap Europe project will be to outline and map synergy 

opportunities within the European NUTS3 regions with respect to local heat resources and excess 

heat recovery in district heating systems. In essence, this objective will be pursued by combining 

data on current district heating systems and available heat resources with low temperature heat 

demands in residential and service sectors, hereby identifying European heat ‘hot spots’ for 

further analysis and evaluation. The key questions to be answered in this analysis are: 

 Which European NUTS3 regions or agglomerations of NUTS3 regions have large volumes of 

low temperature heat demands in residential and service sectors? 

 Which European NUTS3 regions or agglomerations of NUTS3 regions have large volumes of 

excess heat and local heat resources? 

 At acceptable investment cost levels for district heating systems, how much excess heat and 

local heat resources in identified NUTS3 regions will be recoverable and possible to utilise? 

 What is the magnitude of fossil fuel substitution by this excess heat recovery and local heat 

resource utilisation, and what are the resulting reductions in greenhouse gas emissions 

 

Several methodology issues are present in this part of the project and initial pre-study work has 

been to define the concept of excess heat hot spots. A first step was to establish a straight forward 

ratio concept describing the fraction of existing excess heat in a NUTS3 region by the total volume 

of residential and service sectors low temperature heat demands in this NUTS3 region: 

                   
                    

                            
 

In the planned full project, existing excess heat, including excess heat from large combustion 

installations, waste-to-energy facilities, and energy intensive industrial activities (including fuel 

supply and refineries), is thought to be divided by all low temperature heat demands for space and 

tap water heating in any given NUTS3 region to produce the excess heat ratio. Since, during the 

pre-study, not all collected input data from these activities were found reliable, the excess heat 

ratio map in Figure 24 is established on the basis of excess heat from energy intensive industrial 

activities only (including fuel supply and refineries). As an example still, this map shows that excess 



 

    
 

42 

heat ratios within the 1303 EU27 NUTS3 regions very well may escalate beyond one and above, 

indicating that existing volumes of industrial excess heat are larger than total volumes of low 

temperature heat demands in residential and service sectors.  

 

Figure 24: NUTS3 regions with respect to industrial excess heat by heat demand ratios. 

But, by this concept design no distinction is made regarding the actual magnitude of neither 

existing excess heat nor low temperature heat demands. Hence, the excess heat ratio may reach 

high values in sparsely populated areas where only moderate volumes of existing excess heat are 

present. Since the main purpose by using the excess heat ratio is to identify densely populated 

areas with existing and available excess heat, the pre-study work has subsequently continued by 

developing and analysing measures by which the excess heat ratio concept can be adjusted to take 

into account the population and heat density of each NUTS3 region. 

In this continued work, an excess heat hot spot has been defined as an area in which favourable 

conditions for the establishment of district heating may exist: adequate heat demands, low 

investment costs in infrastructure as well as sufficient heat potentials from waste incineration, 

thermal power plants, and industry. An excess heat hot spot is furthermore defined by its 
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neighbourhood and how well neighbouring areas are suitable as heat sources or sinks to be 

connected with each other. Hence, the clustering of similar NUTS3 regions as well as the distance-

defined characteristics of large-scale district heat developments has to be included in an excess 

heat hot spot analysis. 

A second analysis for further reference thus charts the density of urban areas as a general measure 

of agglomerated heat markets. Using the European CORINE 2000 GIS database data of the urban 

tissue, a continuous density map has been prepared using a Kernel function (which includes a 

weight proportional to the square root of distance) and the ground area of CORINE 2000 polygons 

weighted with a factor 1.5 for dense, continuous urban areas, and 0.5 for industrial areas 

compared to non-continuous urban areas. A search radius of 50 km has been applied, in which all 

weighted areas are summarised. The resulting map, see Figure 25, shows areas with a density 

above what has been assumed a suitable threshold. It becomes imminent how urban areas are 

interconnected in Europe. 

 

Figure 25: Weighted Kernel density of urban areas by CORINE 2000 polygons. The high density areas are likely candidates for district 

heating regardless heat demand or supply.  
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In this pre-study, an analysis was also carried out as an experiment to chart areas in Europe which 

may be excess heat hot spots for activities aiming at the development of district heating. First a 

series of spatial statistics was carried out for the mapping of conditions for district heating on the 

NUTS3 region level mentioned above. Using the Anselin Local Moran’s I (pronounced as the letter 

i) method, using heat demand density as a set of weighted features, statistically significant “hot 

spots”, “cold spots”, and spatial outliers were found. The analysis was performed for a fixed 

distance of 50 km, and resulted in the identification of areas where the surrounding NUTS3 regions 

have similar heat density values (either high values or low values). The resulting map can be seen 

in Figure 26. Some few interesting areas can be identified around the bigger cities of England, 

some highly populated areas of Germany, and in Paris and its neighbourhood, as well as 

Copenhagen. It shows that the method is highly sensitive to the size of NUTS3 regions. 

 

 

Figure 26: A cluster analysis using the Anselin Local Moran’s I method with a fixed distance of 50 km reveals areas with similarly high 

heat demand densities, which form clusters of statistical significance around a few high density areas. 
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A similar analysis to identify clusters of NUTS3 regions with similar heat demand densities is the 

Getis-Ord Gi* (pronounced G-i-star) method for excess heat hot spot analysis. This method may 

tell where features with either high or low values of heat demand cluster spatially, i.e. where there 

are similar conditions for the development of district heating. As statistically significant hot spots, 

those areas are identified where features will have a high value and be surrounded by other 

features with high values as well. The Getis-Ord Gi* tool returns a chart, Figure 27, which shows a 

more differentiated picture than by cluster analysis, in which also the neighbouring NUTS3 regions 

are included. The hot spots found are basically the same. 

 

 

 

Figure 27: The Getis-Ord Gi* hot spot analysis reveals a similar but more differentiated picture of hot spots based on the heat 

demand density of NUTS3 regions. 

Multi-criteria models offer a different type of analysis where a series of input criteria are based on 

scaled and graded measures, which individually describe suitability. The criteria are weighted into 
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a composite suitability map, which then contains the weighted criteria. This way a series of 

parameters can be included in a suitability map, which otherwise are difficult to compare in a 

quantitative manner.  

It was assumed that for the successful installation of a district heating system, four conditions 

must be met to a certain degree: sufficient heat demand density; sufficient heat supply including 

excess heat, geothermal or solar heat; as well as an adequate agglomeration of similar areas in 

clusters. 

The resulting map, see Figure 28, is highly sensitive to the chosen scaling and weighting, hence 

subject to debate and further analysis. Multi-criteria modelling allows for highly complex 

representations of the input parameters to such analysis and is a powerful tool for the exploration 

of likely district heating areas. It may be combined with economic and energy system data for 

increased credibility.  

 

 

Figure 28:  A sample of a hot spot analysis by means of multi-criteria modelling, which includes urban tissue, heat density, Getis-Ord 

Gi* “hot spot” z-score, industrial excess heat, geothermal potential as well as solar heating potential. 

To conclude, the pre-study work has considered several methods by which to identify and evaluate 

NUTS3 regions as excess heat hot spots for future district heating developments. Although the pre-
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study was not able to collect all input data to complete such analysis with the required degree of 

detail and credibility at this stage, the work has resulted in an exploration of methods to be used in 

the subsequent full excess heat hot spot analysis. In short, the methodological sequence to 

identify beneficial NUTS3 regions where heat synergy opportunities are present and favourable, 

consist of the following steps: 

 Identification of NUTS3 region excess heat hot spots by use of excess heat ratios, weighted by 

e.g. population and heat densities and supported by multi-criteria modelling and CORINE 2000 

urban tissue information 

 In-depth analyses of identified NUTS3 excess heat hot spot regions to locate low temperature 

heat demand concentrations and assess distances to available excess heat sources and local 

heat resources 

 Estimations of investment costs for extensions of present and/or establishment of new district 

heating systems that will utilise available excess heat sources and local heat resources for heat 

distribution to residential and service sector buildings 

 Quantification of possible excess heat recovery and local heat resource utilisation by NUTS3 

regions, and magnitude estimates of substituted fossil fuels currently used for heating 

purposes per NUTS3 region. 

3.6 THE MAIN ALTERATION OF THE HRE SCENARIO COMPARED TO THE EU CPI 

SCENARIO 

The amounts of heat delivered for end use in the two scenarios analysed are presented in Figure 

29. The main alteration in the HRE scenario is the amounts of heat delivered to buildings, since the 

deliveries to industrial purposes is the same. The assumed market shares for district heating were 

set to 30% in 2030 and 50% in 2050. The assumptions were based on indications from the mapping 

part previously presented in this section. 

 

Figure 29: Estimated heat sales in the Heat Roadmap Europe scenario compared to the EU CPI scenario.  
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4. ENERGY SYSTEM ANALYSIS OF THE HRE SCENARIO 

The district heating alternatives relate to the residential and services sectors only, which means 

they require the replacement of conventional boilers with district heating. Based on the analysis in 

section 3, two district heating alternatives were considered: one where district heating represents 

30% of the heat demand in the residential and services sectors and another where is represents 

50%. Both of these scenarios were modelled in the 2010 reference scenario, while in the 

forecasted EU CPI scenarios, it was assumed that there would be 30% district heating in 2030 and 

50% in 2050. 

Since district heating will replace urban boilers, it was assumed that the district heating would 

replace oil, gas, and coal boilers based on the proportion of the heat demand they served in the 

IEA 2010 reference. Biomass boilers were not replaced since they are typically outside the reach of 

district heating and since biomass replaced by district heating may again be used to replace oil and 

natural gas in other buildings. Moreover no changes have been made to electric heating. 

The production of district heating  will come partly from existing power and CHP plants assuming 

an average efficiency in the present situation of 32% electric and 52% thermal output and partly 

from new Combined Cycle CHP plants with an efficiency of 47% electric and 44% thermal output. 

The CC plants will burn natural gas equivalent to the oil and gas saved in the individual boilers 

being replaced. 

The CHP and boiler capacities are increased in the alternatives until the system operates in a 

similar way to the operation to the current system. In numerical terms, this means the CHP 

capacity was adjusted until the peak boilers provided approximately 9-13% of the heat demand. 

Note that in the 50% district heating alternative, this means that a small share of large-scale heat 

pumps has to be added in order to be able to balance the electricity supply. The boiler capacity 

was assumed to be 20% larger than the maximum heat demand and the thermal storage capacity 

was assumed to equal eight days of average district heating consumption. 

Moreover the new CHP plants will be able to replace future power stations. The systems have 

been adjusted so that the reserve power capacity in all systems will be 30% additional to the peak 

production on the power plants. 

Using the hourly EnergyPLAN reference models (and not the data from the statistics) discussed in 

section 2, the district heating alternatives outlined in section 3, and these assumptions, the 

implications of district heating are quantified here in terms of PES and carbon dioxide emissions. 

4.1 DISTRICT HEATING IN 2010 

In this section, the implications of district heating are quantified for the IEA 2010 reference 

scenario with 30% and 50% district heating in the residential and service sectors. The benefits are 

illustrated in two steps. Step 1 shows the potential energy efficiency improvements connected to 

CHP while step 2 shows the additional potential of increasing the use of industrial waste heat, 

waste incineration, geothermal and solar thermal resources. The idea of these assumptions is to 
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illustrate the potential energy efficiency improvements using the same amounts of biomass as well 

as oil plus natural gas. 

The results for step 1 are illustrated in Figure 30. As can be seen the expansion of district heating 

and CHP will be able to decrease the fuel consumption for heating the buildings in Europe 

substantially. Today 12% is district heating consuming a little less than 250 TWh/year of fuels while 

the remaining individual boilers consume around 3,100 TWh/year. The total of approximately 

3,350 TWh/year will decrease by 40% to around 2,000 TWh/year. The fuel used by the boilers to 

be replaced by district heating if expanded to 50%, is today approximately 1,550 TWh/year of coal, 

oil and natural gas.  In a system with District heating and CHP the fuel consumption of the total 

system will be decreased by 1,300 TWh/year meaning that the same heating can be provided with 

a use of only net 250 TWh/year of fuel. The net use of 250 TWh/year requires the following 

changes to the system: Fuel for CHP is increased in existing systems by 1,360 TWh/year and in new 

CC-CHP systems by 1,560 TWh/year while the electricity from the CHP plants replace production 

on the power plants of 2,670 TWh/year. In the power and CHP plants the burning of natural gas is 

increased by net 1,460 TWh/year equivalents to the oil and gas saved in the individual boilers 

while the net influence on the use of coal is a decrease of 1,210 TWh/year. 

In total the expansion of district heating will decrease the European primary energy consumption 

by 7%, fossil fuels by 9% and the carbon dioxide emission by 13% supplying exactly the same 

energy services as illustrated in Figure 31. 

 

Figure 30: Primary energy supply and carbon dioxide emissions from hot water and the heating of buildings in the 2010 EU27 energy 

system at present and if district heating and CHP were expanded to 30% or 50%. 
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Figure 31: Primary energy supply and carbon dioxide emissions for the entire EU27 energy system in 2010 at present and if district 

heating and CHP were expanded to 30% or 50%. 

 

 

 

Figure 32: Primary energy supply and carbon dioxide emissions from hot water and the heating of buildings in the 2010 EU27 energy 

system at present and if district heating and CHP were expanded to 30% or 50%, in combination with the expansion of industrial 

waste heat, waste incineration, geothermal, and solar thermal heat for district heating.  
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Figure 33: Primary energy supply and carbon dioxide emissions for the entire EU27 energy system in 2010 at present and if district 

heating and CHP were expanded to 30% or 50%, , in combination with the expansion of industrial waste heat, waste incineration, 

geothermal, and solar thermal heat for district heating. 

Step 2 illustrates further benefits of district heating by implementing the following investments: 

 Increase waste incineration from now 105 to 1198 TWh/year in 2050 
 Increasing the use of geothermal heat from now approximately 2 to 111 TWh/year in 2050 
 Increase the use of solar thermal heat from now 0.04 to 55.5 TWh/year in 2050 
 Increase the use of industrial excess heat from 53 to 219 TWh/year in 2050 

The results are shown in Figure 32.  

Since these investments represent the replacement of fuels rather than efficiency improvements, 

such benefits will only slightly decrease the primary energy consumption further. However the 

share of fossil fuels as well as the carbon dioxide emissions will be reduced substantially. In total 

(both step 1 and 2) the total fossil fuels in Europe are reduced by 13% and the carbon dioxide 

emissions by 17% as illustrated in Figure 33. 

4.2 DISTRICT HEATING IN 2030 AND 2050 

Using the same assumptions as the 2010 analysis, district heating was also simulated in the 

forecasted EU CPI scenarios for 2030 and 2050. As described in section 2.4, the name of the EU CPI 

reference model created in the EnergyPLAN tool is the EP CPI scenario. Hence, this is the reference 

which the district heating alternatives are compared against in this section. The 30% DH 

alternative is implemented in 2030 and the 50% DH alternative in 2050. 
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4.2.1 PRIMARY ENERGY SUPPLY AND CARBON DIOXIDE EMISSIONS 

Here, step 1 was not implemented separately since the 2010 analysis has already demonstrated 

the benefits of energy efficiency and renewable resources individually. Instead both steps have 

been implemented together. 

The results of such analyses are illustrated in Figure 34 and Figure 35 with regard to primary 

energy supply and carbon dioxide emissions representing the heating of all buildings in Europe. In 

the diagrams the expansion of district heating is compared to the CPI reference. As can be seen 

the fuel consumption for heating is expected to decrease in the CPI reference mainly due to energy 

savings. If district heating is expanded at the same time then substantial fuel savings and carbon 

dioxide reductions will be achieved. The variety of new heat sources used to meet these new 

district heating demands is outlined in Figure 36, where it is clear that an expansion in district can 

also enable a significant expansion in renewable heat production. 

 

Figure 34: Primary energy supply and carbon dioxide emissions from hot water and the heating of buildings in the 2010, 2030, and 

2050 EU27 energy system under a business-as-usual scenario and if district heating and CHP is expanded to 30% in 2030 and to 50% 

in 2050, in combination with the expansion of industrial waste heat, waste incineration, geothermal, and solar thermal heat for 

district heating.  
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Figure 35: Primary energy supply and carbon dioxide emissions for the entire EU27 energy system in 2010, 2030, and 2050 under a 

business-as-usual scenario and if district heating and CHP were expanded to 30% in 2030 and 50% in 2050, in combination with the 

expansion of industrial waste heat, waste incineration, geothermal, and solar thermal heat for district heating. 

 

Figure 36: District heating production for the entire EU27 energy system in 2010, 2030, and 2050 under a business-as-usual scenario 

and if district heating and CHP were expanded to 30% in 2030 and 50% in 2050, in combination with the expansion of industrial 

excess heat, waste incineration, geothermal, and solar thermal heat for district heating. 
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4.2.2 ENERGY SYSTEM COSTS 

Using the EP CPI models simulated in EnergyPLAN, it is also possible to estimate the annual costs 

of the energy systems in 2010, 2030, and 2050. The fuel prices in the Energy Roadmap 2050 report 

were also used here, which are illustrated in Table 2 while all of the assumed technology costs are 

outlined in Annex V. The socio-economic comparison in HRE does not include externalities i.e. 

environmental and health costs. It includes changes in the investments and in operation and 

maintenance costs while also taking into account the lifetime of the different technologies in the 

energy systems. The costs of carbon dioxide quotas are not included. In HRE a real interest rate of 

3% is used excluding inflation for the evaluation of the socio-economic consequences. 

 

Table 2: Fuel prices assumed for each year  [29]. 

€/GJ Oil 
(US$/bbl.) 

Gas Coal Fuel 
Oil 

Gasoline Diesel Jet 
Fuel 

LPG Biomass Dry 
Biomass 

2010 
82 5.9 2.7 8.8 11.7 11.7 12.7 13.2 6.8 4.7 

2030 
106 9.0 3.0 11.7 14.8 14.8 15.9 16.8 7.3 4.6 

2050 
127 10.9 3.2 14.3 17.6 17.6 18.6 19.9 8.4 5.6 

 

The annual costs for the heating sector were calculated for the IEA 2010, EP CPI 2030, and EP CPI 

2050 reference scenarios along with the Heat Roadmap Europe district heating alternatives with 

30% district heating in 2030 (i.e. HRE RE 2030) and with 50% district heating in 2050 (i.e. HRE RE 

2050). 

The results indicate that the annual cost of the EU heating sector was approximately €130 billion in 

2009, which under the EP CPI business-as-usual scenario will increase to approximately €140 

billion in 2030 and subsequently reduce slightly to €136 billion in 2050, primarily due to increased 

energy savings in buildings. At present the most significant component of this is fuel, which 

demonstrates the importance of energy efficiency technologies such as district heating. 
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Figure 37: Socio-economic costs for the entire EU27 energy system in 2010, 2030, and 2050 under a business-as-usual scenario and if 

district heating and CHP were expanded to 30% in 2030 and 50% in 2050, in combination with the expansion of industrial waste heat, 

waste incineration, geothermal, and solar thermal heat for district heating. 

In contrast, as illustrated in Figure 37, with the implementation of the district heating expansion 

scenario, the heating sector costs will decrease to €128 billion/year in 2030 and continue to 

decrease to €122 billion/year in 2050. Therefore, the total costs of heating buildings in Europe will 

be approximately €14 billion/year lower in 2050 if the district heating alternatives presented in 

this pre-study are implemented. Even more significant though is the fact that implementing the 

district heating alternative will transfer money from importing fossil fuels to investments in district 

heating pipelines, CHP plants, geothermal, solar thermal, industrial waste heat, and waste 

incineration. This will result in the creation of jobs within the EU which otherwise would not be 

created. A rough estimate of the number of jobs that will be created is presented in the next 

section. 

4.2.3 JOB CREATION IN THE HRE 2050 RE SCENARIO 

When fully implemented in 2050, the increase to 50% district heating decreases the annual 

heating sector costs in Europe by approximately €14 billion. However in order to reach this point, a 

number of additional investments have to be made. These investments are listed in Table 3 below. 
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Table 3: Additional investments required in the HRE 2050 RE scenario compared to the reference 

2050 EP CPI scenario over the 38 year period between 2013 and 2050. 

Investments (Billion €) EP CPI HRE Difference Lifetime Adjusted 

District heating pipes  146 146 40 146 

Industrial excess heat  7 7 30 8 

Waste incineration 64 157 93 20 176 

Geothermal  24 24 25 37 

Solar thermal  22 22 20 42 

Individual boilers 254 104 -150 15 -379 

CHP2  138 138 22 238 

Heat pumps  62 62 20 118 

Peak load boilers 17 96 79 20 150 

Power plants 582 568 -14 30 -18 

Total 918 1324 406  518 

The additional investments in district heating, new CC-CHP, heat pumps, solar, waste and 

geothermal sum up to a total of €570 billion. However, some investments will also decrease, i.e. all 

the re-investments in individual boilers and savings in new power plants which can be replaced by 

the new CC-CHP plants. The saved investment in individual boilers here has been calculated as the 

difference between individual boilers and individual district heating units.  

As a basis for the cost calculations a new natural gas boiler of €4000 is replaced with a district 

heating unit of €2000 representing a heat demand of 15 MWh/year. Consequently the saved costs 

are calculated as approximately €2000 per 15 MWh/year moved from individual boilers to district 

heating. Savings in power plants has been calculated on the basis of a 30% reserve capacity in all 

scenarios.  

As can be seen in Table 3, the total net additional investments add up to €406 billion in the 38 year 

period from 2013 to 2050. However since the lifetime exceeds for some of the investments, 

reinvestments has to be partially included as listed in the next column (Adjusted). 

Including re-investments the net additional investment sums up to 518 billion in the 38 year period 

from 2013 to 2050 equal to around 13.6 billion a year in average. A first rough estimate of job 

creation has been made on the following assumptions: 

 20% of all investments are import which will create no jobs in Europe 

 The rest of the additional investment cost will create 20 man-years per million euros 

Under these assumptions the additional jobs can be calculated as 8-9 million man-years in total 

during the period from 2013 to 2050 or approximately 220,000 jobs. It must however be 

emphasized that 220,000 jobs is a rough estimate of the minimum of work places being created. 

The 220,000 jobs arise from purely the additional investments. The real number will be higher due 

to the following: 

 Multiplier effects of the jobs created are not included 
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 Additional jobs are not included due to that the energy costs of Europe will decrease 
and consequently European industry will become more competitive 

Additional jobs from industrial innovation due to the investments in new energy 

technologies are not included 
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5. CONCLUSIONS 

The early results in this pre-study demonstrate the potentially significant role that district heating 

can play in the future EU27 energy system. These results have been reached using a number of 

unfavourable assumptions. For example, the future energy system used for the analysis is not 

optimised for district heating: There is a high amount of base load nuclear and industrial CHP along 

with a lot of intermittent renewable energy. Hence, based on positive implications identified in this 

initial pre-study, the results can be considered relatively robust. 

The major findings from this Heat Roadmap Europe pre-study exploring the future district heating 

possibilities can be summarised by the following eight conclusions: 

 The first conclusion is that more district heating in Europe will reduce the energy system 
costs considerably since local heat recycling and renewable energy use will reduce 
expensive energy imports, while also increasing the efficiency of both the electricity and 
heat sectors. The pre-study calculations indicate that the overall annual cost reduction in 
the heating sector will be about €14 billion by 2050, if more district heating is 
implemented compared to the Energy Roadmap 2050 CPI reference. This corresponds to a 
relative cost decrease of 11%. At the current energy import prices, the direct socio-
economic payback is estimated to be two to three years for heat distribution pipes put 
into the ground giving more recycled heat. In addition, there is a balance-of-payment 
benefit that has not been quantified in this study. 

 
 The second conclusion follows from the first conclusion: Since fossil fuels are substituted 

with local resources, the reduced primary energy supply from fossil fuels will also give 
considerably reduced emissions of carbon dioxide for all heat demands served by district 
heating systems. The reduced energy import will also increase the future security of supply 
and give more positive balances of foreign exchange. 

 
 The third conclusion is that more district heating will generate local labour since intensive 

investments will replace expensive imports of fossil fuels to Europe. An estimate indicates 
that approximately 8-9 million man-years will be created in Europe during the 40 year 
period, due to investments in heat recycling, renewable energy supply, and extended and 
new heat grids. This represents a rough estimate of the minimum number of jobs and 
should be quantified more thoroughly in the future. 

 
 The fourth conclusion concerns the future European electricity supply system. With a high 

proportion of variable renewable electricity supply, a smart energy system is crucial so 
that all sectors can contribute to a balance between supply and demand. One of the 
proven flexible partners is district heating systems which can provide balancing power in 
both directions. For example, electric boilers and large heat pumps together with thermal 
storages can absorb critical excess electricity generation, while combined heat and power 
plants can actively support the electricity supply system during power deficits. Therefore, 
district heating can enable higher penetrations of intermittent electricity production on 
the European electricity grid. 
 

 
 
 

continued on the next page 
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 The fifth conclusion is about the importance of communicating the local possibilities for 
district heating to urban and regional planners. The planned continuation of this pre-study 
should contain a creation of an interactive internet tool providing the local conditions for 
district heating for each administrative region in the EU27. 

 
 The sixth conclusion is about the methodology applied in this pre-study, which is a 

combination of energy modelling and mapping of the local conditions using a high 
geographical resolution: The high resolution also recognises future possibilities for local 
activities managed by local organisations. This methodology is crucial for district heating 
analysis since the potential for expansion is dependent on local heat resources and 
demands. Therefore, this methodology should be elaborated in the planned continuation 
of this pre-study, while also making a tighter connection between the energy modelling 
part and the local mapping part. 

 
 The seventh conclusion concerns traditional energy modelling based on national energy 

balances. Their low geographical resolution tends to exclude specific local possibilities. 
Hereby, they favour generic possibilities available everywhere such as electric and gas 
alternatives associated to major international energy companies. Hence, these traditional 
energy tools may only capture some of the alternatives available. Traditional energy tools 
also tend to work with a low time resolution in their analyses. However, it is important to 
use a high time resolution to capture the daily variations in the energy system in order to 
verify the true variability in energy demand and supply, especially in a future energy 
system with high penetrations of intermittent resources.  

 
 The eighth and final conclusion refers to the availability of data within the current IEA and 

future Energy Roadmap 2050 reports. At present, there is a lack of detailed data for the 
heat sector in these energy balances. For example, all fuels consumed by CHP plants are 
recorded together and not subdivided by condensing mode, extraction mode, and back-
pressure mode. In the future, it would be beneficial if the details within these energy 
balances could be increased for the heat sector. In line with this, we would like to thank 
the European Commission for providing all of the data possible during the limited 
timeframe of this study. 
 

This pre-study has demonstrated the potential increase in energy efficiency and renewable energy 

consumption associated with district heating, so a full research study is recommended to further 

elaborate on the methodology applied in this pre-study. 
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7. ANNEX I: REVIEW OF EXISTING ENERGY STRATEGIES 

In the following pages is seen a description of a selection of the most recent energy scenarios. 

 

Title: Energy Roadmap 2050  

Year of publication: Organization: 

 

2011 European Commission 

COM (2011) 885 Outlook year: 

2050 

Objective:  

The scenarios in Energy Roadmap 2050 investigate the possibilities for moving towards “decarbonisation” of 

the energy system. The Energy Roadmap 2050 does not replace national, regional and local improvements of 

the energy supply, but seeks to develop a technology-neutral framework and argues that compared to 

parallel national schemes, a European approach to the energy challenge will increase security and solidarity 

and lower costs by providing a wider and flexible market for new products and services. 
How buildings are insulated/heated:  

Short-term opportunity to reduce emissions is first and foremost through improvement of the energy 

performance of buildings. The analysis shows that emissions in this area could be reduced by around 90% by 

2050. New buildings built from 2021 onwards should be nearly zero-energy buildings.  

Heat pumps and storage heaters based on electricity and renewable energy such as solar heating, biogas and 

biomass also provided through district heating systems, should be used. 

How district heating is mentioned:  

Energy Roadmap 2050 describes seven scenarios. Two of them assuming current trends and fixed political, 

economic, and technical limitations. These are called current trend scenarios. The other five are called 

“decarbonisation scenarios” and use different measures to reduce the greenhouse emissions of Europe. 

The report focuses on electricity to play a much greater role in all scenarios. However it states that future 

modeling improvements could consider better representation of the impacts of climate change itself, as well 

as energy storage and smart grid solutions for distributed generation. CHP and district heating are only 

mentioned briefly.  

In the “decarbonisation” scenarios there is seen a transition of the energy system from low capital costs and 

high fuel and operational costs to high capital costs and low fuel costs. The increase of capital costs is due to 

investments in power plants and grids, industrial energy equipment, smart meters, insulation material, more 

efficient low carbon vehicles, RES equipment (such as solar collectors) etc. 

Link to report: http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:52011PC0885:EN:NOT  

 

 

 

http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:52011PC0885:EN:NOT
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Title: Impact assessment – accompanying document to Energy Roadmap 2050  

Year of publication: Organization: 

 

2011 European Commission 

SEC(2011) 1565  Outlook year: 

2050 

Objective:  

(Energy Roadmap 2050) 
How buildings are insulated/heated:  

Coal and oil hold a share of around 25% of final energy used for heating and cooling of the built 

environment. In the reference scenario this decreases to around 15% in 2050 and practically disappears in 

the decarbonisation scenarios. Gas decreases from around 45% today to around 30% by 2050 in the 

decarbonisation scenarios in the context of global climate action. The share of electricity increases from 

currently less than 10% to more than 20% in the decarbonisation scenarios, and the share of biomass from 

currently over 10% to over 25%. Due to the efficiency gains the increase of biomass corresponds more or 

less to a stagnation of biomass used for space heating in absolute terms. Distributed heat maintains its 

current share of less than 10% by 2050.
2
 

How district heating is mentioned:  

District heating is not included in detail in the modeling. It is stated in the Impact Assessment document 

accompanying the report A Roadmap for moving to a competitive low carbon economy in 2050 [51] that 

potential break-through technologies depending on unforeseeable structural change have not been taken 

into account. A particular example is the limitations in terms of modeling energy storage and smart grid 

solutions that would enable very wide scale deployment of distributed generation. 

However district heating represents different actual quantities of energy depending on the scenario, but is in 

general not considered playing a major role in the long run since the report focuses on “decarbonisation”.  

A table from the report shows that there is not that big a difference in the share of district heating in the 

scenarios. However it is important to note that the energy consumption is not the same in the different 

scenarios. The final energy demand is in the decarbonisation scenarios 8%-14% lower in 2030 compared to 

the reference and 34%-40% lower in 2050. 

Share of distributed heat in total heating for residential and tertiary: 

Year                                          2020     2030     2050 

CPI                                         11.6%   12.0%   12.0% 

Energy Efficiency                  12.0%   12.8%   13.3% 

Div. Supply Technology        11.6%   12.4%   13.4% 

High RES                              11.6%   11.4%     8.5% 

Delayed CCS                        11.6%   12.4%   12.4% 

Low Nuclear                        11.6%   12.5%   13.7% 

Link to report: http://ec.europa.eu/governance/impact/ia_carried_out/docs/ia_2011/sec_2011_1565_en.pdf  

 

 

                                                           
2 This is from the Impact Assessment document (report reference no. SEC(2011) 288) accompanying the report  
A Roadmap for moving to a competitive low carbon economy in 2050, but though they are separate documents,  
they are referring to the same scenarios and are all published by the European Commission in 2011:  
http://ec.europa.eu/governance/impact/ia_carried_out/docs/ia_2011/sec_2011_0288_en.pdf.  

http://ec.europa.eu/governance/impact/ia_carried_out/docs/ia_2011/sec_2011_1565_en.pdf
http://ec.europa.eu/governance/impact/ia_carried_out/docs/ia_2011/sec_2011_0288_en.pdf


 

    
 

67 

Title: Roadmap 2050 – A practical guide to prosperous low-carbon Europe – Technical 

analysis 

 

Year of publication: Organization: 

 

2010 The European Climate Foundation (ECF),  

McKinsey & Company,  

KEMA,  

The Energy Futures Lab at Imperial College London,  

Oxford Economics 

Outlook year: 

2050 

Objective:  

The mission of the “Roadmap 2050” project is to provide a practical, independent and objective analysis of 

pathways to achieve a low-carbon economy in Europe, in line with the energy security, environmental and 

economic goals of the European Union. The focus is on the description of a plausible way to realize an 

economy-wide GHG reduction of 80%, and the development and assessment of pathways to decarbonize the 

power sector. 
How buildings are insulated/heated:  

The report mentions that an urgent implementation challenge is to make a large scale fuel shift possible. In 

terms of the building sector it suggest more heat pumps both for individual and in district heating 

applications, and district heating based on industry waste heat, biomass or alternatively geothermal heat. 

How district heating is mentioned: 

The report addresses the implications of electrification in buildings and transport on the final energy 

demand. However it does not provide a detailed analysis on the issues. The report does mention district 

heating as part of the system and discuss the entire emission scope in general, but focuses particularly at the 

power sector.  

Out of scope is i.e. detailed trade-offs in the decarbonisation of building heat via electrification, 

biomass/biogas, zero carbon district heating schemes or other options. 

District heating with large scale heat pumps is assumed where building density is high. Alternatives are 

biomass or biogas fired CHP or district heating plants, or biogas fired boilers in homes. 

Link to report: http://www.roadmap2050.eu/attachments/files/Volume1_ExecutiveSummary.pdf 

 

 

Title: Governing the transition to low-carbon futures:  

A critical survey of energy scenarios for 2050 

 

Year of publication: Organization: 

 

2011 Luleå University of Technology – Economics Unit  

Lund University – Dept. of Political Science and 

Environmental, Energy System Studies and AgriFood 

Economics Center 

Outlook year: 

2050 

Objective:  

The article addresses the role of energy future studies in providing insights on the societal transitions that 

are implied by contemporary visions of low-carbon futures. The analysis is based on a critical review of 20 

scenario exercises of relevance for meeting long-term (i.e., 2050) climate policy objectives. 
How buildings are insulated/heated:  

Not described. 

How district heating is mentioned:  

District heating, cogeneration and CHP are not mentioned directly. 

Link to report: -  

 

http://www.roadmap2050.eu/attachments/files/Volume1_ExecutiveSummary.pdf
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Title: Providing all global energy with wind, water, and solar power (part I and II)  

Year of publication: Organization: 

 

2010 Stanford University – Dept. of Civil and Environmental 

Engineering  

University of California at Davis – Institute of Transportation 

Studies 

Outlook year: 

2050 

Objective:  

In the article the feasibility of providing worldwide energy for all purposes (electric power, transportation, 

heating/cooling, etc.) from wind, water, and sunlight (WWS) is analysed. 

How buildings are insulated/heated:  

The article proposes air- and ground-source heat-pump water and air heaters and electric resistance water 

and air heaters. For high-temperature industrial processes, we propose that energy be obtained by 

combustion of electrolytic hydrogen. It is assumed that 5% of fuel use for space heating and 20% of fuel use 

for ‘‘appliances’’ (mainly cooking) are not electrified. 

How district heating is mentioned:  

The article focuses distinctly on electricity and does not cover district heating. 

Link to report: -  

 

 

Title: The energy report – 100% renewable energy by 2050  

Year of publication: Organization: 

 

2011 WWF International 

ECOFYS 

OMA (Office for Metropolitan Architecture) 

Outlook year: 

2050 

Objective:  

WWF has a vision of a world powered by 100% of renewable energy sources by the middle of this century.  

The Energy Scenario in the report includes an energy system (global) with 95% of renewable energy in 2050. 
How buildings are insulated/heated: 

Existing buildings should be insulated and new buildings should be constructed to use as little energy as 

possible. Heating needs can be reduced by 60% in all existing buildings by 2050 if 2-3% of the total floor area 

is retrofitted with extra insulation each year. Solar and geothermal sources, as well as heat pumps should 

provide a large share of heat for buildings and industry. Almost no energy will be needed for heat and 

cooling in all new buildings by 2030.  

How district heating is mentioned:  

The report only mentions district heating briefly when referring to the potential of geothermal heating. In 

does not mention large scale CHP and focuses mainly on electricity.  

In the scenario geothermal and solar are mentioned in a general way without going into details if it implies 

large or small scale units. 

The report describes a scenario where the world as far as possible use electrical energy rather than solid and 

liquid fuels. Wind, solar, biomass and hydropower are the main sources of electricity, with solar and 

geothermal sources, as well as heat pumps providing a large share of heat for buildings and industry. 

Link to report: http://assets.panda.org/downloads/101223_energy_report_final_print_2.pdf  

 

 

http://assets.panda.org/downloads/101223_energy_report_final_print_2.pdf
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Title: Energy Technology Perspectives 2010 – Scenario and strategies to 2050 (part 1 and 2)  

Year of publication: Organization: 

 

2010 IEA (International Energy Agency)  

Outlook year: 

2050 

Objective:  

The goal of the book is to contribute to the reduction in carbon dioxide emissions by acting as a reference 

point for (among others) policy makers who need to be able to identify the role of new technologies, 

potential technical and political barriers, and to provide the measures to overcome them. 
How buildings are insulated/heated:  

In the short run low-cost energy efficiency options will reduce carbon dioxide emissions caused by the 

building sector. In the longer term highly efficient heat pumps for heating and cooling, solar thermal space 

and water heating, and small scale CHP systems with hydrogen fuel cells are some of the main technologies 

to decarbonize the energy consumption of buildings. The book states that CHP can be an attractive 

abatement option in buildings, but that the use of it depends on the application and location.  

How district heating is mentioned:  

The book examines the fuels and technologies that are likely to be important in a) a “Baseline scenario” and 

b) in a range of scenarios, in which global carbon dioxide emissions are reduced by 50% from 2005 levels by 

2050, called “the BLUE Map scenario” and a series of variants of it.  

However district heating is only occasionally mentioned and CHP/DH is described as playing an important, 

but small role.  

The use of CHP approximately triples in the BLUE Map scenario in absolute terms between 2007 and 2050. 

The share of CHP in power generation increases to 13% over this period, up from 10% in the Baseline 

scenario. 

It is mentioned that Denmark, Finland and the Netherlands already have high share of CHP and that many 

other countries have significant potential to expand their use of CHP, if they take steps to address barriers 

such as unfavorable regulatory frameworks in the form of buy-back tariffs, exit fees, and backup fees, 

challenges in locating suitable heat users, and the relative cost-ineffectiveness of CHP units of less than 1 

MW capacity. 

The book describes that thermal storage is likely to become increasingly important in the long term as 

thermal loads begin increasingly to use electricity generated through heat pump technologies and as CHP 

plays a stronger role. Besides this, it explains that for CHP plants the desired energy output can be difficult to 

control since the ratio of electricity and heat most often is not perfectly matching the demand. However CHP 

units can store excess heat energy for use at a later time in response to heat demand by responding to 

electricity system signals. 

Link to report: iea.org/Textbase/nppdf/free/2010/etp2010_part1.pdf and 

iea.org/Textbase/nppdf/free/2010/etp2010_part2.pdf    

 

 

http://www.iea.org/Textbase/nppdf/free/2010/etp2010_part1.pdf
http://www.iea.org/Textbase/nppdf/free/2010/etp2010_part2.pdf
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Title: World energy outlook – 2011  

Year of publication: Organization: 

 

2011 IEA (International Energy Agency) 

Outlook year: 

2035 

Objective:  

IEA World Energy Outlook is based on the Energy Technology Perspectives. See description of this report 

above. 
How buildings are insulated/heated:  

(See Energy Technologies Perspectives.) 

How district heating is mentioned:  

(See Energy Technologies Perspectives.) 

Link to report: -  

 

 

Title: Deciding the Future – Energy Policy Scenarios to 2050  

Year of publication: Organization: 

 

2007 World Energy Council (WEC) 

Outlook year: 

2050 

Objective:  

The study seeks to  

- better understand possible energy futures 

- assess the challenges presented in these energy futures 

- identify the role that policy may play to help or hinder the achievement of WEC’s Millennium Goals of 

   Accessibility, Availability, and Acceptability.  

It is not a theoretical study, but a product of several workshops held to discuss energy policies for different 

regions of the world. 
How buildings are insulated/heated:  

Advanced building technologies produce major energy savings and buildings might even become net energy 

producers rather that consumers. However these technologies have not been implemented in old buildings 

and in the developing world, either because the technology has not been made available or it is too 

expensive. 

How district heating is mentioned:  

District heating, cogeneration and CHP are not mentioned directly. 

Link to report: http://www.worldenergy.org/documents/scenarios_study_online_1.pdf 

 

 

 

  

http://www.worldenergy.org/documents/scenarios_study_online_1.pdf
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8. ANNEX II: THE PRIMES MODELLING TOOL 

Description of the PRIMES model from the [26, 30] references. 

Title: PRIMES model  

Year of publication: Organization: 

 

2010 National Technical University of Athens, Department of 

Electrical and Computer Engineering (E3MLab) Outlook year: 

n/a 

Objective:  

Used for the 2010 scenarios for the European Commission. 
Overview:  

PRIMES simulates a market equilibrium solution for energy supply and demand [31]. It has been developed by the 

National Technical University of Athens (NTUA) since 1994, but it is not sold to third parties. Instead, the tool is 

used within consultancy projects undertaken by NTUA and partners. 

The equilibrium used in PRIMES is static (within each time period) but repeated in a time-forward path, under 

dynamic relationships. In the Energy Roadmap 2050 project, PRIMES was used to model the period 1990-2050, in 

time steps of 5 years. For the years 1990, 1995, 2000 and 2005 the model results are calibrated to Eurostat 

statistics. For the year 2010, the model results are semi-calibrated by taking into account the latest statistics and 

short-term expectations. All thermal, renewable, storage/conversion, and transport technologies can be simulated 

except battery energy storage, compressed-air energy storage, intelligent battery-electric-vehicles, and hybrid 

vehicles. PRIMES is organized in sub-tools, each one representing the behavior of a specific ‘demander’ and/or a 

‘supplier’ of energy. PRIMES simulates time-of-use varying load for network-supplied energy carriers to 

synchronize electricity, gas and steam/heat in all sectors of demand, supply and trading. To do this, load curves 

are computed by the model in a bottom up manner depending on the load profiles of individual uses of energy.  

The tool can support policy analysis in the following fields: (1) standard energy policy issues: security of supply, 

strategy, costs (includes all costs), etc., (2) environmental issues, (3) pricing policy and taxation, standards on 

technologies, (4) new technologies and renewable sources, (5) energy efficiency in the demand-side, (6) 

alternative fuels, (7) conversion to decentralisation and electricity-market liberalisation, (8) policy issues regarding 

electricity generation, gas distribution, and new energy forms. PRIMES is organised by an energy production sub-

system for supply consisting of oil products, natural gas, coal, electricity and heat production, biomass supply, and 

others, and by end-use sectors for demand consisting of residential, commercial, transport, and nine industrial 

sectors. Some demanders may also be suppliers, as for example industrial co-generators of electricity and steam. 

PRIMES has previously been used to create energy outlooks for the EU [32], develop a climate change action and 

renewable energy policy package for the EU [33] and also, to analyse a number of different policies to reduce GHG 

in the EU25 by 2030 [34, 35]. Finally, PRIMES has been used for several EU governments as well as private 

companies. 

How district heating is mentioned:  

The optimisation is simultaneous for power, CHP, distributed steam, distributed heat, district heating and 

industrial boilers. The optimisation is intertemporal (perfect foresight) and solves simultaneously a unit 

commitment-dispatching problem; a capacity expansion problem; and a DC-linearized optimum power flow 

problem (over interconnectors).  

Promotion of CHP and micro-generation: priority grid access for CHP, CHP values representing marginal benefits 

for CHP can be introduced. Micro-generation is included only in the low voltage grid, reducing the transmission 

costs.  

The use of biomass is optimally allocated endogenously and might therefore not be used for CHP. 

Link to report: http://www.sciencedirect.com/science/article/pii/S0306261909004188  

http://ec.europa.eu/energy/energy2020/roadmap/doc/sec_2011_1569_2_prime_model.pdf  

http://www.sciencedirect.com/science/article/pii/S0306261909004188
http://ec.europa.eu/energy/energy2020/roadmap/doc/sec_2011_1569_2_prime_model.pdf
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9. ANNEX III: DATA USED TO MODEL THE REFERENCE ENERGY 

SCENARIOS FOR 2010, 2030, AND 2050 

9.1 2010 
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Unit Year: 2010 

TWh Data IEA
a
 Reference

a
 EnergyPLAN

a
 

D
em

an
d

s 

Electricity 2,720 
3,178 3,179 

Plus Additional Losses 458 

Including Electric Heating - 381
b 

381 

Including Electric Cooling - 40
c
 40 

District Heating for Residential & Services 338 338 
402 

Plus Additional Losses - 64 

District Heating for Industry 230 230 
See Note

d
 

Plus Additional Losses - 43 

Total District Heating Consumption 567 567 567 

Total District Heating Production 675 675 675 

Fu
el

 f
o

r 
P

ro
d

u
ct

io
n

 

Power Plants (excl. Waste & Nuclear) 2,639 - 
3,572 

Power Plants Operating in Condensing Mode - 3,583
e 

CHP Extraction Plants (excl. Waste & Nuclear) 1,333 - 
385 

Fuel Consumed in Back Pressure CHP Mode - 389
e
 

Centralised Peak Boilers (excl. Waste) 
151 

43
f
 45 

Centralised Heat-Only Boilers (excl. Waste) 108
f
 107 

Nuclear Power Plants 2,711 2,711 2,712 

Fuel Refinery Losses & Energy Industry Own Use 950 1,080
g
 1,081 

Hydroelectricity 328 328 328 

Intermittent RE: Wind, Solar PV, Wave, Tidal 147 147 149 

Fi
n

al
 E

n
er

gy
 C

o
n

su
m

p
ti

o
n

  

(e
xc

lu
d

in
g 

el
ec

tr
ic

it
y 

&
 d

is
tr

ic
t 

h
ea

ti
n

g)
 

Industry 1,864 

2,590 2,590 Industry CHP & Boilers 651 

Agriculture / Fishing (excluding oil) 76 

Residential 2,340 
3,099 3,099 

Services 759 

Transport 4,414 4,414 4,414 

Jet Fuel 583 583 583 

Petrol 1,127 1,127 1,127 

Diesel 2,234 
2,403 2,403 

Agricultural Oil Consumption 169 

Gas 25 25 26 

LPG 60 60 60 

Electricity 71 71 71 

Biofuels 143 143 143 

To
ta

l F
u

el
 

Coal 3,100 3,100 3,091 

Oil See Note
h
 6,059 6,059 

Gas 4,842 4,842 4,838 

Biomass/Waste 1,340 1,340 1,340 

Renewables 557 544 545 

Nuclear 2,711 2,711 2,712 

Total 18,609   18,583 

C
O

2
 

(M
t)

 Energy System See Note
i
 - 3,690 

Heating Sector - - 651 
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9.2 2030 

Unit Year: 2030 

TWh Data EU CPI
a
 Reference

a
 EnergyPLAN

a
 

D
em

an
d

s 

Electricity 3,239 
3,780 3,775 

Plus Additional Losses 541 

Including Electric Heating - 446
b
 446 

Including Electric Cooling - 46
c
 46 

District Heating for Residential & Services 312 312 
376 

Plus Additional Losses - 65 

District Heating for Industry 678 678 
Note

d
 

Plus Additional Losses - 141 

Total District Heating Consumption 990 990 990 

Total District Heating Production 1,195 1,195 1,195 

Fu
el

 f
o

r 
P

ro
d

u
ct

io
n

 

Power Plants (excl. Waste & Nuclear) 1,859 - 
2,837 

Power Plants Operating in Condensing Mode - 2,833
e
 

CHP Extraction Plants (excl. Waste & Nuclear) 1,248 - 
274 

Fuel Consumed in Back Pressure CHP Mode - 275
e
 

Centralised Peak Boilers (excl. Waste) 
94 

35
f
 35 

Centralised Heat-Only Boilers (excl. Waste) 59
f
 59 

Nuclear Power Plants 2,301 2,301 2,301 

Fuel Refinery Losses & Energy Industry Own Use See Note
j
 1,938 1,938 

Hydroelectricity 364 364 365 

Intermittent RE: Wind, Solar PV, Wave, Tidal 945 945 945 

Fi
n

al
 E

n
er

gy
 C

o
n

su
m

p
ti

o
n

  

(e
xc

lu
d

in
g 

el
ec

tr
ic

it
y 

&
 d

is
tr

ic
t 

h
ea

ti
n

g)
 

Industry 1,779 

2,758 2,758 Industry CHP & Boilers 915 

Agriculture / Fishing (excluding oil) 64 

Residential 1,927 
2,558 2,558 

Services 631 

Transport 4,496 4,496 4,498 

Jet Fuel 777 777 777 

Petrol 1,094 1,094 1,094 

Diesel 1,917 
2,049 2,049 

Agricultural Oil Consumption 132 

Gas 8 8 8 

LPG 54 54 54 

Electricity 116 116 116 

Biofuels 399 399 399 

To
ta

l F
u

el
 

Coal 2,267 2,267 2,272 

Oil 6,454 6,454 6,452 

Gas 4,297 4,297 4,301 

Biomass/Waste 
3,649 

2,075 2,075 

Renewables 1,575 1,567 

Nuclear 2,301 2,301 2,301 

Total 18,969   18,967 

C
O

2
 

(M
t)

 Energy System See Note
i
 - 3,410 

Heating Sector - - 497 
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9.3 2050 

Unit Year: 2050 

TWh Data EU CPI
a
 Reference

a
 EnergyPLAN

a
 

D
em

an
d

s 

Electricity 3,952 
4,620 4,616 

Plus Additional Losses 668 

Including Electric Heating - 528
b
 528 

Including Electric Cooling - 55
c 

55 

District Heating for Residential & Services 282 282 
334 

Plus Additional Losses - 52 

District Heating for Industry 869 869 
Note

d
 

Plus Additional Losses - 160 

Total District Heating Consumption 1,150 1,150 1,150 

Total District Heating Production 1,363 1,363 1,363 

Fu
el

 f
o

r 
P

ro
d

u
ct

io
n

 

Power Plants (excl. Waste & Nuclear) 1,068 - 
2,873

m
 

Power Plants Operating in Condensing Mode - 2,364
e
 

CHP Extraction Plants (excl. Waste & Nuclear) 1,488 - 
192 

Fuel Consumed in Back Pressure CHP Mode - 192
e
 

Centralised Peak Boilers (excl. Waste) 
76 

376
f
 37 

Centralised Heat-Only Boilers (excl. Waste) 39
f
 39 

Nuclear Power Plants 2,545 2,545 2,545 

Fuel Refinery Losses & Energy Industry Own Use See Note
j
 1,916 1,915 

Hydroelectricity 384 384 384 

Intermittent RE: Wind, Solar PV, Wave, Tidal 1,465 1,465 1,465 

El
ec

tr
ic

it
y 

Im
b

al
an

ce
 Forced Export of Electricity (CEEP) - - 222

k
 

Pumped Hydroelectric Energy Storage (PHES) Losses - - 13
l
 

Additional Fuel for Power Plants due to CEEP & PHES Losses - - 484
m

 

Extra Fuel for Power Plants in EnergyPLAN compared the Reference     509 

Fi
n

al
 E

n
er

gy
 C

o
n

su
m

p
ti

o
n

  

(e
xc

lu
d

in
g 

e
le

ct
ri

ci
ty

 &
 d

is
tr

ic
t 

h
e

at
in

g)
 

Industry 1,780 

3,034 3,034 Industry CHP & Boilers 1,196 

Agriculture / Fishing (excluding oil) 58 

Residential 1,671 
2,220 2,220 

Services 549 

Transport 4,322 4,322 4,322 

Jet Fuel 776 776 776 

Petrol 935 935 935 

Diesel 1,746 
1,872 1,872 

Agricultural Oil Consumption 126 

Gas 3 3 3 

LPG 28 28 28 

Electricity 255 255 255 

Biofuels 453 453 453 

To
ta

l F
u

el
 

Coal 1,769 1,769 2,007
m

 

Oil 6,010 6,010 6,011 

Gas 4,120 4,120 4,389
m

 

Biomass/Waste 
4,367 

2,227 2,227 

Renewables 2,140 2,131 

Nuclear 2,545 2,545 2,545 

Total 18,810   19,310 

C
O

2
 

(M
t)

 Energy System See Note
i
 - 3,219 

Heating Sector - - 427 
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9.4 NOTES FOR DATA IN TABLES 

a. IEA represents the data recorded in the 2009 EU27 energy balance completed by the 

International Energy Agency. EU CPI refers to the data obtained from the Current Policy 

Initiatives scenario contained in Energy Roadmap 2050 energy report, which documents a 

business-as-usual scenario for the EU energy system. The Reference column illustrates 

how the data was interpreted in this study while the EnergyPLAN column presents the 

results from the EnergyPLAN tool after the reference data was modelled in it. 

b. The percentage of electricity used for electric heating is based on a survey completed by 

the Joint Research Centre, which analysed the various demands for electricity within the 

residential and service sectors [52]: 27.3% of electricity in the residential sector and 19.7% 

in the service sector are used for heating. 

c. The percentage of electricity used for electric cooling is based on a survey completed by 

the Joint Research Centre, which analysed the various demands for electricity within the 

residential and service sectors [52]: 2.8% of electricity in the residential sector and 2.1% in 

the service sector are used for cooling. 

d. In the IEA energy balance, there is heat consumption for industry of 230 TWh. However, 

this is used for both space heating and process heat. Since it was not possible to establish 

what the breakdown is between these, industrial heat consumption was not modelled as 

district heating in this study, but instead it was modelled as fuel consumption in industry. 

Hence, the focus in this study is district heating for space heating in the residential and 

services sectors. However, the demand for district heating in industry is still accounted for 

in the fuels consumed by industry. 

e. The fuel consumed by power plants which can operate as both condensing and back-

pressure mode (i.e. extraction CHP plants) is all recorded as CHP fuel consumption in the 

IEA energy balance. For example, in the Danish energy balance constructed by the IEA, all 

electricity production for coal and gas power plants is recorded as CHP. However, although 

these plants are capable of operating in CHP mode, they often operate in condensing only 

mode. Therefore, it would be inaccurate to model CHP exactly as it is reported in the IEA 

energy balance. Instead, the fuel required for the power plants was estimated separately 

for condensing mode and CHP mode. This was done by calculating the total district heating 

demand which CHP plants must provide after boilers, waste incineration, and excess 

industrial heat are taken into account. Then, assuming a thermal efficiency of 52%, the 

total fuel consumed for the power plant while operating in CHP mode is estimated. The 

remaining fuel recorded in the IEA energy balance as CHP is then reassigned to the power 

plants operating in condensing mode. 

f. Boilers are recorded as either main-activity or industrial boilers in the IEA energy balance. 

However, for modelling purposes it is also important to know what the primary function of 

a boiler is on a district heating network: to provide all of the heat (i.e. heat-only) or to 

simply act as backup during peak heat demands. Since this distinction is not available in 

the IEA data, it is estimated in this study by assuming that all coal, biomass, and half of the 

natural gas boilers are used as heat-only boilers, while the other half of natural gas along 

with all of the oil boilers are used as peaking boilers. 

g. When the primary energy supply in the reference data was compared to the IEA primary 

energy supply statistics, there were some minor differences in the range of approximately 

0.5%. For completeness and to ensure all fuel is accounted for, this difference was 
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included as losses in the reference statistics and hence it increases from 950 TWh in the 

IEA statistics to 1080 TWh in the reference.  

h. The primary energy supply recorded for oil in the IEA EU27 energy balance contains a 

number of negative numbers due to the large amounts of exported oil products. As a 

result, a signal figure was not identified in the statistics which indicated the total oil 

consumed. To overcome this, the total oil was calculated by adding the total oil under the 

final energy consumption (including international aviation from the Energy Roadmap 2050 

report), power plants, CHP plants, boilers, and the oil losses relating to oil refineries and 

the energy industry’s own use. 

i. The IEA energy balance does not provide carbon dioxide emissions. Also, the EU CPI 

carbon dioxide emissions for the total energy system are not included here since they are 

not directly comparable to the EnergyPLAN results for many reasons. Firstly, the emission 

factors in EnergyPLAN are based on Danish emission factors and hence they do not 

account for the country specific variations in the EU energy system. Also, carbon dioxide 

reductions due to carbon capture and storage (CCS) is not accounted for in the 

EnergyPLAN results and they have not been corrected to account for the import/export of 

electricity. Finally, it was not possible to establish which fuels were used in the EU CPI 

scenario to estimate the carbon dioxide emissions for the total energy system i.e. were the 

carbon dioxide calculations based on the gross inland consumption only or was this 

adjusted based on net imports? For these reasons, the carbon dioxide emission 

calculations are different in this study compared to the EU CPI study and it was not 

possible due to the timeframe of the project, to find the data necessary to align the two 

datasets. 

j. In the EU CPI, it was not possible to calculate from the statistics presented how much of 

each fuel (solids, oil, gas, and biomass/waste) was lost due to the energy industry’s own 

use, refinery losses, and other fuel transformation processes. Therefore, this number was 

estimated based on the difference between the gross inland consumption in the EU CPI 

report and the reference statistics after all other statistics were compared and verified. It 

is important to note that this does not affect the electricity and district heating dynamics 

in the modelling and hence, it is primarily included to ensure that no fuels are left 

unaccounted for in the energy system. 

k. When the 2050 reference data is modelled in the EnergyPLAN tool, the electricity system is 

forced to export during some hours of the calculation in order to maintain grid stability. 

After investigating the hourly calculations in EnergyPLAN, this occurs for a combination of 

reasons including an increase in inflexible baseload production (in particular nuclear 

power) along with an increase in intermittent renewable energy production (in particular 

wind and PV). Therefore, it is likely that the EU CPI scenario will need to be redesigned to 

ensure that this does not occur. For example, more flexible demands could be introduced 

along with electricity, heat, and fuel storages: many of these alternatives are presented in 

detail in [25, 28, 36]. 

l. The ‘PHES losses’ is the net difference between consumption and production at the PHES 

plants. 

m. Since there is approximately 220 TWh of CEEP and 13 TWh of PHES losses, the power 

plants produce more electricity than calculated in the reference statistics. Assuming the 

average condensing power plant efficiency, which was calculated form the statistics as 
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48.5%, the additional fuel required by the power plants to produce this fuel is 

approximately 485 TWh. It was concluded that this, along with minor modelling 

differences accounts for the difference between the reference statistics and the 

EnergyPLAN simulations, since these are approximately the same at 485 TWh and 510 

TWh respectively. It is assumed here that this additional electricity demand from the 

power plants will be met by coal and natural gas power plants only, which explains the 

additional coal and natural gas demands in the EnergyPLAN simulations compared to the 

reference statistics. 
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10. ANNEX IV: LOCAL CONDITIONS ILLUSTRATED BY MAPS 

10.1 URBAN AREAS 

 

 

 

Figure 38: Proportion of urban areas within the NUTS3 regions. 
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10.2 CARBON DIOXIDE EMISSIONS 

 

 

Figure 39: Major carbon dioxide emitters in Europe. Source: The E-PRTR database at EEA in Copenhagen. However, some of this 

information is wrong giving to high emissions compared to national aggregated emissions and the ETS. These errors must be 

corrected before estimating the corresponding excess heat quantities. 
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10.3 MAJOR COMBUSTION INSTALLATIONS FOR POWER AND HEAT GENERATION 

 

 

Figure 40: Major combustion installations above 50 MW for power and heat generation in Europe. Source: The E-PRTR database at 

EEA in Copenhagen. 
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10.4 WASTE-TO-ENERGY 

 

 

Figure 41: Locations of 414 waste incineration plants in Europe. Sources: CEWEP, E-PRTR, ISWA, and some national sources for 

Sweden, Denmark, and France. 

  



 

    
 

83 

10.5 INDUSTRIAL EXCESS HEAT 

 

 

Figure 42: Locations of major energy intensive industries with considerable volumes of excess heat. Source: The E-PRTR database at 

EEA in Copenhagen. 
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10.6 GEOTHERMAL HEAT 

 

 

Figure 43: Identified geothermal heat resources by temperature at 2000 m depth by NUTS3 region. Source: European Commission, 

Atlas of Geothermal Resources in Europe. Publication EUR 17811, Luxembourg 2002. 
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10.7 BIOMASS 

 

 

Figure 44: Proportion of forest area in various parts of Europe. Source: European Forest Institute. 
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10.8 SOLAR THERMAL HEAT 

 

 

Figure 45: Annual solar irradiation on a south-oriented tilted surface at optimal angle by NUTS3 region. 
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11. ANNEX V: TECHNOLOGY COSTS FOR THE ENERGY SYSTEMS 

ANALYSIS 

 

Table 4: Technology costs for the energy system analysis. 

Production Type Unit Investment 
(M€/unit) 

Lifetime 
(Years) 

Fixed O&M 
(% of Investment) 

Solar Thermal TWh/year 440 20 0.001% 

District Heating Piping TWh/year 112 40 1.00% 

Excess Industrial Process Heat TWh/year 40 30 1.00% 

Geothermal Heat TWh/year 216 25 2.42% 

Heat Storage  GWh 2.7 20 0.70% 

Large CHP MWe 1.35 30 2.00% 

Waste CHP TWh/year 250.45 20 1.82% 

Absorption Heat Pump MWth 1.9 25 2.42% 

Centralized Boilers MWth 0.15 20 3.00% 

Large-Scale Heat Pump MWe 2.7 20 0.20% 

Wind Onshore MWe 1.4 20 3.00% 

Wind Offshore MWe 2.7 20 2.90% 

Photovoltaic MWe 3.45 30 0.77% 

Wave Power MWe 4.285 20 3.50% 

Tidal Power MWe 3.5 20 3.00% 

River Hydro MWe 1.9 50 2.70% 

Hydro Power MWe 1.9 50 2.70% 

Hydro Storage GWh 7.5 50 1.50% 

Hydro Pump MWe 0.6 50 1.50% 

Large Power Plants MWe 0.890 26.0 1.822% 

Nuclear MWe 3 25 3.74% 

Geothermal Power Plant MWe 2.63 20 3.42% 

Electrolyzer MWe 0.57 20 2.46% 

Hydrogen Storage GWh 10 30 0.50% 

Pump MWe 0.6 50 1.50% 

Turbine MWe 0.6 50 1.50% 

Pump Storage GWh 7.5 50 1.50% 

Individual Boilers MWth 0.588 15 2.10% 

Individual CHP MWe 0.671 10 2.80% 

Individual Heat Pump MWe 1.879 15 0.60% 

Individual Electric Heat MWe 0.3 20 0.90% 

Individual Solar Thermal TWh/year 671 20 0.93% 

Biogas Plant TWh/year 376.5 20 11.25% 

Gasification Plant MWe 2.6 20 2.08% 

Biodiesel Plant MWe 0.535 20 5.19% 

Bioethanol Plant MWe 1.42 20 5.00% 
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Table 5: Power plant investment costs by fuel type. 

Type Investment Costs 
(M€/MW) 

Fixed O&M Costs 
(€/MW/year) 

Variable O&M Costs 
(€/MWh) 

Lifetime 
(Years) 

Solids 2.04 57200 2 40 

Gas 0.87 30000 2.5 25 

Oil 1.455 43600 2.25 32.5 

Biomass 2.04 57200 2 40 

 

Table 6: Renewable energy costs which were altered over the model timeframe. 

Cost (M€/MW) 2010 2030 2050 

Onshore Wind 1.4 1.22 1.16 

Offshore Wind 2.7 2.2 2.0 

PV 3.45 1.75 0.95 

 

A 3% interest rate is used when investment costs are converted into annual costs. 
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12. ANNEX VI: ENERGYPLAN OUTPUT SHEETS 

12.1 IEA 2010 
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12.2 EP CPI 2030 
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12.3 EP CPI 2050 
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12.4 HRE 2030 RE 
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12.5 HRE 2050 RE 
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13. ANNEX VII: DATA USED TO CREATE FIGURES WITH RESULTS 

13.1 STEP 1: INCREASING DISTRICT HEATING IN 2010 

Primary Energy Supply EU27 

UNIT TWh PJ 

Scenario IEA HRE IEA HRE 

Fuel Present 12% DH 30% DH 50% DH Present 12% DH 30% DH 50% DH 

Nuclear 2,712 2,712 2,712 9,762 9,762 9,762 

Coal 3,091 2,401 1,810 11,127 8,644 6,515 

Oil 6,059 5,850 5,639 21,812 21,058 20,299 

Natural gas 4,838 5,045 5,238 17,418 18,161 18,857 

Biomass 1,363 1,363 1,363 4,906 4,906 4,906 

Other renewable 545 545 545 1,961 1,960 1,961 

Total 18,607 17,914 17,305 66,984 64,491 62,299 

 

Individually Heated Buildings 

UNIT TWh PJ 

Scenario IEA HRE IEA HRE 

Fuel Present 12% DH 30% DH 50% DH Present 12% DH 30% DH 50% DH 

Nuclear 0 0 0 0 0 0 

Coal 131 93 56 471 336 200 

Oil 730 521 310 2,629 1,875 1,116 

Natural gas 1,833 1,308 778 6,599 4,707 2,800 

Biomass 405 405 405 1,459 1,459 1,459 

Other renewable 0 0 0 0 0 0 

Total 3,099 2,327 1,549 11,158 8,378 5,575 

 

Fuel for Heating Houses that are Converted to District Heating 

UNIT TWh PJ 

Scenario IEA HRE IEA HRE 

Fuel Present 12% DH 30% DH 50% DH Present 12% DH 30% DH 50% DH 

Nuclear 0 0 0 0 0 0 

Coal 75 38 0 271 135 0 

Oil 420 209 0 1,513 753 0 

Natural gas 1,055 526 0 3,799 1,892 0 

Biomass 0 0 0 0 0 0 

Other renewable 0 0 0 0 0 0 

Additional CHP & DH 0 86 249 0 309 898 

Total 1,551 858 249 5,583 3,089 898 
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Primary Energy Supply for Heating All Buildings in 2010 

UNIT TWh PJ 

Scenario IEA HRE IEA HRE 

Fuel Present 12% DH 30% DH 50% DH Present 12% DH 30% DH 50% DH 

Nuclear 0 0 0 0 0 0 

Coal 131 93 56 471 336 200 

Oil 730 521 310 2,629 1,875 1,116 

Natural gas 1,833 1,308 778 6,599 4,707 2,800 

Biomass 405 405 405 1,459 1,459 1,459 

Other renewable 0 0 0 0 0 0 

Additional CHP & DH 0 86 249 0 309 898 

Existing CHP & DH 246 246 246 884 884 884 

Total 3,345 2,659 2,044 12,042 9,571 7,357 

 

Carbon Dioxide Emissions for the Total Energy System in 2010 

UNIT Mt 

Scenario IEA HRE 

Fuel Present 12% DH 30% DH 50% DH 

Nuclear 0 0 0 

Coal 1,096 851 642 

Oil 1,590 1,535 1,480 

Natural gas 1,004 1,046 1,086 

Biomass 0 0 0 

Other renewable 0 0 0 

Total 3,690 3,433 3,207 

13.2 STEP 2: INCREASING DISTRICT HEATING IN 2010 WHILE UTILISING RENEWABLE 

RESOURCES 

Primary Energy Supply EU27: High RE 

UNIT TWh PJ 

Scenario IEA HRE IEA HRE 

Fuel 

Present 

12% DH 

30% DH 

with RE 

50% DH 

with RE 

Present 

12% DH 

30% DH 

with RE 

50% DH 

with RE 

Nuclear 2,712 2,712 2,712 9,762 9,762 9,762 

Coal 3,091 2,129 1,319 11,127 7,666 4,749 

Oil 6,059 5,850 5,639 21,812 21,058 20,299 

Natural gas 4,838 5,045 5,240 17,418 18,162 18,864 

Biomass 1,363 1,548 1,733 4,906 5,572 6,239 

Other renewable 545 573 600 1,961 2,062 2,161 

Total 18,607 17,856 17,243 66,984 64,282 62,073 
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Individually Heated Buildings: High RE 

UNIT TWh PJ 

Scenario IEA HRE IEA HRE 

Fuel 

Present 

12% DH 

30% DH 

with RE 

50% DH 

with RE 

Present 

12% DH 

30% DH 

with RE 

50% DH 

with RE 

Nuclear 0 0 0 0 0 0 

Coal 131 93 56 471 336 200 

Oil 730 521 310 2,629 1,875 1,116 

Natural gas 1,833 1,308 778 6,599 4,707 2,800 

Biomass 405 405 405 1,459 1,459 1,459 

Other renewable 0 0 0 0 0 0 

Total 3,099 2,327 1,549 11,158 8,378 5,575 

 

Fuel for Heating Houses that are Converted to District Heating: High RE 

UNIT TWh PJ 

Scenario IEA HRE IEA HRE 

Fuel 

Present 

12% DH 

30% DH 

with RE 

50% DH 

with RE 

Present 

12% DH 

30% DH 

with RE 

50% DH 

with RE 

Nuclear 0 0 0 0 0 0 

Coal 75 38 0 271 135 0 

Oil 420 209 0 1,513 753 0 

Natural gas 1,055 526 0 3,799 1,892 0 

Biomass 0 0 0 0 0 0 

Other renewable 0 0 0 0 0 0 

Additional CHP 

& DH 0 28 187 0 100 672 

Total 1,551 800 187 5,583 2,880 672 

 

Primary Energy Supply for Heating All Buildings in 2010: High RE 

UNIT TWh PJ 

Scenario IEA HRE IEA HRE 

Fuel 

Present 

12% DH 

30% DH 

with RE 

50% DH 

with RE 

Present 

12% DH 

30% DH 

with RE 

50% DH 

with RE 

Nuclear 0 0 0 0 0 0 

Coal 131 93 56 471 336 200 

Oil 730 521 310 2,629 1,875 1,116 

Natural gas 1,833 1,308 778 6,599 4,707 2,800 

Biomass 405 405 405 1,459 1,459 1,459 

Other renewable 0 0 0 0 0 0 

Add. CHP & DH 0 28 187 0 100 672 

Additional CHP 

& DH 246 246 246 884 884 884 

Total 3,345 2,601 1,981 12,042 9,362 7,131 
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Carbon Dioxide Emissions for the Total Energy System in 2010: High RE 

UNIT TWh 

Scenario IEA HRE 

Fuel Present 12% DH 30% DH with RE 50% DH with RE 

Nuclear 0 0 0 

Coal 1,097 759 468 

Oil 1,595 1,535 1,480 

Natural gas 970 1,046 1,086 

Biomass 0 0 0 

Other renewable 0 0 0 

Total 3,663 3,340 3,034 

 

13.3 STEP 3: INCREASING DISTRICT HEATING IN 2030 AND 2050 WHILE UTILISTING 

RENEWABLE RESOURCES 

Primary Energy Supply for the EU27 

UNIT TWh PJ 

Scenario 2010 2030 2050 2010 2030 2050 

Fuel 

IEA 

12% 

DH 

EP CPI 

10% 

DH 

HRE 

30% 

DH 

with 

RE 

EP CPI 

10% 

DH 

HRE 

50% 

DH 

with 

RE 

IEA 

12% 

DH 

EP CPI 

10% 

DH 

HRE 

30% 

DH 

with 

RE 

EP CPI 

10% 

DH 

HRE 

50% 

DH 

with 

RE 

Nuclear 2,712 2,301 2,301 2,545 2,545 9,762 8,285 8,285 9,161 9,161 

Coal 3,091 2,189 1,744 1,837 723 11,127 7,879 6,278 6,614 2,602 

Oil 6,059 6,446 6,156 5,985 5,638 21,812 23,207 22,163 21,545 20,298 

Natural gas 4,838 4,234 4,527 4,196 4,303 17,418 15,243 16,296 15,107 15,492 

Biomass 1,363 2,131 2,140 2,261 2,696 4,906 7,673 7,703 8,138 9,705 

Other renewable 545 1,567 1,564 2,131 2,142 1,961 5,640 5,630 7,672 7,712 

Total 18,607 18,868 18,432 18,955 18,047 66,984 67,926 66,354 68,237 64,971 
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Primary Energy Supply for Heating All Buildings in 2010: High RE 

UNIT TWh PJ 

Scenario 2010 2030 2050 2010 2030 2050 

Fuel 

IEA 

12% 

DH 

EP CPI 

10% 

DH 

HRE 

30% 

DH 

with 

RE 

EP CPI 

10% 

DH 

HRE 

50% 

DH 

with 

RE 

IEA 

12% 

DH 

EP CPI 

10% 

DH 

HRE 

30% 

DH 

with 

RE 

EP CPI 

10% 

DH 

HRE 

50% 

DH 

with 

RE 

Nuclear 0 0 0 0 0 0 0 0 0 0 

Coal 131 62 41 62 17 471 222 148 223 61 

Oil 730 592 396 510 139 2,629 2,132 1,425 1,836 502 

Natural gas 1,833 1,510 1,010 1,283 351 6,599 5,435 3,634 4,619 1,263 

Biomass 405 395 603 365 365 1,459 1,421 2,171 1,315 1,315 

Other renewable 0 0 0 0 0 0 0 0 0 0 

Additional CHP & DH 0 0 280 0 441 0 0 1,008 0 1,588 

Existing CHP & DH 246 246 246 246 246 884 884 884 884 884 

Total 3,345 2,804 2,575 2,466 1,559 12,042 10,093 9,271 8,877 5,613 

 

Individually Heated Buildings: High RE 

UNIT TWh PJ 

Scenario 2010 2030 2050 2010 2030 2050 

Fuel 

IEA 

12% 

DH 

EP 

CPI 

10% 

DH 

HRE 

30% 

DH 

with 

RE 

EP 

CPI 

10% 

DH 

HRE 

50% 

DH 

with 

RE 

IEA 

12% 

DH 

EP 

CPI 

10% 

DH 

HRE 

30% 

DH 

with 

RE 

EP 

CPI 

10% 

DH 

HRE 

50% 

DH 

with 

RE 

Nuclear 0   0 0 0 0 0 0 0 0 

Coal 131 62 41 62 17 471 222 148 223 61 

Oil 730 592 396 510 139 2,629 2,132 1,425 1,836 502 

Natural gas 1,833 1,510 1,010 1,283 351 6,599 5,435 3,634 4,619 1,263 

Biomass 405 395 395 365 365 1,459 1,421 1,421 1,315 1,315 

Other renewable 0 0 0 0 0 0 0 0 0 0 

Total 3,099 2,558 1,841 2,220 873 11,158 9,209 6,629 7,993 3,141 

 

EU27 Carbon Dioxide Emissions (Mt) 

Scenario IEA / EP CPI HRE HRE with RE 

2010 3,690 3,690 3,690 

2030 3,347 3,173 3,084 

2050 3,088 2,832 2,624 
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District Heating Production from 2010 to 2030 

UNIT TWh 

Scenario IEA HRE 

Fuel 
2010 

Present 12% DH 

2030 

30% DH & RE 

2050 

50% DH & RE 

Existing CHP 200 331 88 

Additional CHP 0 268 474 

Industrial surplus heat 53 170 272 

Waste incineration 27 209 344 

Heat pumps 0 39 228 

Geothermal heat 0 56 111 

Solar thermal 0 28 56 

Boiler 121 119 139 

Total 401 1,220 1,711 

 




